Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
The Research Institute of McGill University Health Centre, Montreal, QC, Canada.
Nat Commun. 2024 Aug 3;15(1):6585. doi: 10.1038/s41467-024-50764-5.
In type 1 diabetes, high-fat meals require more insulin to prevent hyperglycemia while meals followed by aerobic exercises require less insulin to prevent hypoglycemia, but the adjustments needed vary between individuals. We propose a decision support system with reinforcement learning to personalize insulin doses for high-fat meals and postprandial aerobic exercises. We test this system in a single-arm 16-week study in 15 adults on multiple daily injections therapy (NCT05041621). The primary objective of this study is to assess the feasibility of the novel learning algorithm. This study looks at glucose outcomes and patient reported outcomes. The postprandial incremental area under the glucose curve is improved from the baseline to the evaluation period for high-fat meals (378 ± 222 vs 38 ± 223 mmol/L/min, p = 0.03) and meals followed by exercises (-395 ± 192 vs 132 ± 181 mmol/L/min, p = 0.007). The postprandial time spent below 3.9 mmol/L is reduced after high-fat meals (5.3 ± 1.6 vs 1.8 ± 1.5%, p = 0.003) and meals followed by exercises (5.3 ± 1.2 vs 1.4 ± 1.1%, p = 0.003). Our study shows the feasibility of automatically personalizing insulin doses for high-fat meals and postprandial exercises. Randomized controlled trials are warranted.
在 1 型糖尿病中,高脂肪餐需要更多的胰岛素来预防高血糖,而紧随其后的有氧运动则需要更少的胰岛素来预防低血糖,但个体之间的调整需要有所不同。我们提出了一个使用强化学习来个性化高脂肪餐和餐后有氧运动胰岛素剂量的决策支持系统。我们在一项为期 16 周的、15 名接受多次每日注射治疗的成年人的单臂研究(NCT05041621)中测试了该系统。这项研究的主要目的是评估新型学习算法的可行性。该研究观察了葡萄糖结果和患者报告的结果。高脂肪餐的餐后增量血糖曲线下面积从基线期到评估期得到改善(378±222 与 38±223 mmol/L/min,p=0.03),餐后运动的增量血糖曲线下面积也得到改善(-395±192 与 132±181 mmol/L/min,p=0.007)。高脂肪餐后,血糖低于 3.9 mmol/L 的时间减少(5.3±1.6 与 1.8±1.5%,p=0.003),餐后运动时也减少(5.3±1.2 与 1.4±1.1%,p=0.003)。我们的研究表明,自动个性化高脂肪餐和餐后运动胰岛素剂量是可行的。需要进行随机对照试验。