Naik Manisha Krishna, Baishya Chandrali, Premakumari R N, Samei Mohammad Esmael
Department of Studies and Research in Mathematics, Tumkur University, Tumkur, Karnataka, 572103, India.
Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.
Sci Rep. 2024 Aug 3;14(1):18015. doi: 10.1038/s41598-024-68769-x.
This interdisciplinary study critically analyzes current research, establishing a profound connection between sea water, sea ice, sea temperature, and surface temperature through a 4D hyperchaotic Caputo fractional differential equation. Emphasizing the collective impact on climate, focusing on challenges from anthropogenic global warming, the study scrutinizes theoretical aspects, including existence and uniqueness. Two sliding mode controllers manage chaos in this 4D fractional system, assessed amid uncertainties and disruptions. The global stability of these controlled systems is also confirmed, considering both commensurate and non-commensurate 4D fractional order. To demonstrate the intricate chaotic motion within the system, we employ the Lyapunov exponent and Poincare sections. Numerical simulations are conducted by using the predictor-corrector method. The effects of surface temperature on chaotic dynamics are discussed. The crucial role of sea ice reflection in climate stability is highlighted in two scenarios. Correlation graphs, comparing model and observational data using the predictor-corrector method, enhance the proposed 4D hyperchaotic model's credibility. Subsequently, numerical simulations validate theoretical assertions about the controllers' influence. These controllers indicate which variable significantly contributes to controlling the chaos.
这项跨学科研究批判性地分析了当前的研究,通过一个4D超混沌卡普托分数阶微分方程,在海水、海冰、海温与地表温度之间建立了深刻的联系。该研究强调了对气候的综合影响,聚焦于人为全球变暖带来的挑战,审视了包括存在性和唯一性在内的理论方面。两个滑模控制器在这个4D分数阶系统中管理混沌,在不确定性和干扰的情况下进行评估。考虑到4D分数阶的 commensurate 和 non-commensurate 情况,还证实了这些受控系统的全局稳定性。为了展示系统内复杂的混沌运动,我们使用了李雅普诺夫指数和庞加莱截面。通过预测-校正方法进行数值模拟。讨论了地表温度对混沌动力学的影响。在两种情况下突出了海冰反射在气候稳定性中的关键作用。使用预测-校正方法比较模型和观测数据的相关图,增强了所提出的4D超混沌模型的可信度。随后,数值模拟验证了关于控制器影响的理论断言。这些控制器指出了哪个变量对控制混沌有显著贡献。