Suppr超能文献

[公式:见正文] 通过[公式:见正文]-卡普托分数阶导数和数值模拟分析[公式:见正文]-19大流行过程的模型。

[Formula: see text] model for analyzing [Formula: see text]-19 pandemic process via [Formula: see text]-Caputo fractional derivative and numerical simulation.

作者信息

Mohammadaliee Behnam, Roomi Vahid, Samei Mohammad Esmael

机构信息

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

Insurance Research Center, Tehran, Iran.

出版信息

Sci Rep. 2024 Jan 6;14(1):723. doi: 10.1038/s41598-024-51415-x.

Abstract

The objective of this study is to develop the [Formula: see text] epidemic model for [Formula: see text]-[Formula: see text] utilizing the [Formula: see text]-Caputo fractional derivative. The reproduction number ([Formula: see text]) is calculated utilizing the next generation matrix method. The equilibrium points of the model are computed, and both the local and global stability of the disease-free equilibrium point are demonstrated. Sensitivity analysis is discussed to describe the importance of the parameters and to demonstrate the existence of a unique solution for the model by applying a fixed point theorem. Utilizing the fractional Euler procedure, an approximate solution to the model is obtained. To study the transmission dynamics of infection, numerical simulations are conducted by using MatLab. Both numerical methods and simulations can provide valuable insights into the behavior of the system and help in understanding the existence and properties of solutions. By placing the values [Formula: see text], [Formula: see text] and [Formula: see text] instead of [Formula: see text], the derivatives of the Caputo and Caputo-Hadamard and Katugampola appear, respectively, to compare the results of each with real data. Besides, these simulations specifically with different fractional orders to examine the transmission dynamics. At the end, we come to the conclusion that the simulation utilizing Caputo derivative with the order of 0.95 shows the prevalence of the disease better. Our results are new which provide a good contribution to the current research on this field of research.

摘要

本研究的目的是利用[公式:见文本] - 卡普托分数阶导数为[公式:见文本] - [公式:见文本]建立[公式:见文本]流行病模型。利用下一代矩阵法计算再生数([公式:见文本])。计算模型的平衡点,并证明无病平衡点的局部和全局稳定性。讨论敏感性分析以描述参数的重要性,并通过应用不动点定理证明模型存在唯一解。利用分数阶欧拉程序,得到模型的近似解。为了研究感染的传播动力学,使用MatLab进行数值模拟。数值方法和模拟都可以为系统行为提供有价值的见解,并有助于理解解的存在性和性质。通过代入[公式:见文本]、[公式:见文本]和[公式:见文本]的值来代替[公式:见文本],分别出现卡普托、卡普托 - 哈达玛和卡图甘波拉的导数,以便将每个结果与实际数据进行比较。此外,这些模拟特别是针对不同的分数阶来研究传播动力学。最后,我们得出结论,使用阶数为0.95的卡普托导数进行模拟能更好地显示疾病的流行情况。我们的结果是新的,为该研究领域的当前研究做出了良好贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45b4/10771536/c5b5963028a6/41598_2024_51415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验