Suppr超能文献

评估 AlphaMissense 识别影响常见疾病易感性的变异的能力。

Assessment of ability of AlphaMissense to identify variants affecting susceptibility to common disease.

机构信息

UCL Genetics Institute, University College London, London, UK.

出版信息

Eur J Hum Genet. 2024 Nov;32(11):1419-1427. doi: 10.1038/s41431-024-01675-y. Epub 2024 Aug 3.

Abstract

An important issue in the analysis of rare variant association studies is the ability to annotate nonsynonymous variants in terms of their likely importance as affecting protein function. To address this, AlphaMissense was recently released and was shown to have good performance using benchmarks based on variants causing severe disease and on functional assays. Here, we assess the performance of AlphaMissense across 18 genes which had previously demonstrated association between rare coding variants and hyperlipidaemia, hypertension or type 2 diabetes. The strength of evidence in favour of association, expressed as the signed log p value (SLP), was compared between AlphaMissense and 43 other annotation methods. The results demonstrated marked variability between genes regarding the extent to which nonsynonymous variants contributed to evidence for association and also between the performance of different methods of annotating the nonsynonymous variants. Although AlphaMissense produced the highest SLP on average across genes, it produced the maximum SLP for only 4 genes. For some genes, other methods produced a considerably higher SLP and there were examples of genes where AlphaMissense produced no evidence for association while another method performed well. The marked inconsistency across genes means that it is difficult to decide on an optimal method of analysis of sequence data. The fact that different methods perform well for different genes suggests that if one wished to use sequence data for individual risk prediction then gene-specific annotation methods should be used.

摘要

在罕见变异关联研究的分析中,一个重要问题是能够根据非同义变异对其影响蛋白质功能的可能性进行注释。为了解决这个问题,最近发布了 AlphaMissense,并通过基于导致严重疾病的变异和功能测定的基准测试显示出了良好的性能。在这里,我们评估了 AlphaMissense 在 18 个先前证明与高脂血症、高血压或 2 型糖尿病之间存在罕见编码变异关联的基因中的性能。支持关联的证据强度,用有符号的对数 p 值(SLP)表示,在 AlphaMissense 和 43 种其他注释方法之间进行了比较。结果表明,非同义变异对关联证据的贡献程度以及非同义变异注释的不同方法的性能之间存在明显的基因间可变性。尽管 AlphaMissense 在基因间平均产生了最高的 SLP,但它只为 4 个基因产生了最大的 SLP。对于一些基因,其他方法产生了更高的 SLP,并且有一些例子表明,对于某些基因,AlphaMissense 没有产生关联证据,而另一种方法表现良好。基因间的明显不一致意味着很难决定序列数据的最佳分析方法。不同方法在不同基因上表现良好的事实表明,如果希望将序列数据用于个体风险预测,那么应该使用特定于基因的注释方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6f6/11576984/c4c396f2b8f3/41431_2024_1675_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验