Suppr超能文献

一张基于机器学习绘制的2021年长江沿岸10米比例尺化工产业园区地图。

A 10-m scale chemical industrial parks map along the Yangtze River in 2021 based on machine learning.

作者信息

Song Wenming, Chen Mingxing, Tang Zhipeng

机构信息

Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China.

College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Sci Data. 2024 Aug 3;11(1):843. doi: 10.1038/s41597-024-03674-6.

Abstract

Strengthening industrial pollution control in the Yangtze River is a fundamental national policy of China. There is a lack of detailed distribution of chemical industrial parks (CIPs). This Study utilized random forest (RF) and active learning to generate the distribution map of CIPs along the Yangtze River at 10-m resolution. Based on Sentinel-2 imagery, spectral and texture features are extracted. Combined with the Points of Interest (POI), a multidimensional feature space is constructed. By employing partitioned training, classification of CIPs map is achieved on Google Earth Engine (GEE). Technical validation along the entire Yangtze River demonstrates a model accuracy of 80%. Compared to traditional manual survey methods, this approach saves significant time and economic costs while also being timelier. As the first publicly available CIPs map within a 5-km range along the Yangtze River, this research will provide a scientific basis for the fine governance of chemical industries in the region. Additionally, it offers a model guide for the accurate identification of the chemical industry.

摘要

加强长江流域工业污染控制是中国的一项基本国策。目前缺乏化工园区(CIPs)的详细分布情况。本研究利用随机森林(RF)和主动学习生成了长江沿线10米分辨率的化工园区分布图。基于哨兵2号影像,提取光谱和纹理特征。结合兴趣点(POI),构建多维特征空间。通过采用分区训练,在谷歌地球引擎(GEE)上实现了化工园区地图的分类。对长江全流域的技术验证表明模型准确率为80%。与传统的人工调查方法相比,该方法节省了大量的时间和经济成本,同时也更及时。作为长江沿线5公里范围内首个公开可用的化工园区地图,本研究将为该地区化工行业的精细化治理提供科学依据。此外,它还为化工行业的准确识别提供了一个模型指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a542/11297971/b7f92f72a0a7/41597_2024_3674_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验