Suppr超能文献

通过暹罗傅里叶网络实现少样本青铜器分类

Few-shot bronze vessel classification via siamese fourier networks.

作者信息

Wang Weifan, Lu Zhengyang

机构信息

Jiangnan university, Wuxi, China.

出版信息

Sci Rep. 2024 Aug 3;14(1):18011. doi: 10.1038/s41598-024-69272-z.

Abstract

Exploring ancient Chinese artifacts is crucial for analyzing East Asian technological development, with bronze vessel being the critical element. Bronze vessels, typically featuring intricate carvings, hold historical significance and provide valuable insights into past civilizations. However, identifying bronze patterns can be challenging for human vision, and most RGB-domain methods fail to capture periodic designs. Addressing these issues, we propose the Siamese Fourier Networks (SFN), a parallel network model designed for few-shot regular pattern classification. The Siamese network can differentiate between intricate shapes, while Fourier features enable the extraction of regular textures. To optimize parallel networks, we combine the BCE loss and focal contrastive loss, balancing positive and negative samples. Moreover, we introduce the Bronze Vessel Dataset, featuring 527 samples with diverse shapes and unbalanced distributions. Extensive experiments with advanced few-shot methods demonstrate the superiority of SFN and focal mechanism, significantly improving accuracy.

摘要

探索中国古代文物对于分析东亚技术发展至关重要,其中青铜容器是关键要素。青铜容器通常有复杂的雕刻,具有历史意义,能为了解过去的文明提供有价值的见解。然而,识别青铜图案对人类视觉来说具有挑战性,大多数RGB领域的方法都无法捕捉周期性设计。为了解决这些问题,我们提出了暹罗傅里叶网络(SFN),这是一种为少样本规则图案分类设计的并行网络模型。暹罗网络能够区分复杂形状,而傅里叶特征则能提取规则纹理。为了优化并行网络,我们将二元交叉熵损失和焦点对比损失相结合,平衡正负样本。此外,我们引入了青铜容器数据集,该数据集有527个样本,形状多样且分布不均衡。与先进的少样本方法进行的大量实验证明了SFN和焦点机制的优越性,显著提高了准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdd4/11297911/b5f040e24acf/41598_2024_69272_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验