Suppr超能文献

一种具有自动水平 pleiotropy 调整的孟德尔随机化新框架。

A novel framework with automated horizontal pleiotropy adjustment in mendelian randomization.

机构信息

Department of Statistics, Florida State University, Tallahassee, FL, USA; Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA.

出版信息

HGG Adv. 2024 Oct 10;5(4):100339. doi: 10.1016/j.xhgg.2024.100339. Epub 2024 Aug 2.

Abstract

The presence of horizontal pleiotropy in Mendelian randomization (MR) analysis has long been a concern due to its potential to induce substantial bias. In recent years, many robust MR methods have been proposed to address this by relaxing the "no horizontal pleiotropy" assumption. Here, we propose a novel two-stage framework called CMR, which integrates a conditional analysis of multiple genetic variants to remove pleiotropy induced by linkage disequilibrium, followed by the application of robust MR methods to model the conditional genetic effect estimates. We demonstrate how the conditional analysis can reduce horizontal pleiotropy and improve the performance of existing MR methods. Extensive simulation studies covering a wide range of scenarios of horizontal pleiotropy showcased the superior performance of the proposed CMR framework over the standard MR framework in which marginal genetic effects are modeled. Moreover, the application of CMR in a negative control outcome analysis and investigation into the causal role of body mass index across various diseases highlighted its potential to deliver more reliable results in real-world applications.

摘要

由于存在水平多效性,孟德尔随机化(MR)分析一直备受关注,因为它可能会导致严重的偏差。近年来,许多稳健的 MR 方法被提出,通过放宽“无水平多效性”假设来解决这个问题。在这里,我们提出了一种称为 CMR 的新两阶段框架,它将多个遗传变异的条件分析集成在一起,以消除由连锁不平衡引起的多效性,然后应用稳健的 MR 方法来对条件遗传效应估计进行建模。我们展示了条件分析如何减少水平多效性并提高现有 MR 方法的性能。广泛的模拟研究涵盖了水平多效性的多种场景,结果表明,所提出的 CMR 框架在标准 MR 框架(其中对边缘遗传效应进行建模)中表现出更优的性能。此外,CMR 在阴性对照结果分析中的应用以及对各种疾病中体重指数的因果作用的研究,突出了其在实际应用中提供更可靠结果的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验