Fang Lei, Xue Haoran, Lin Zhaotong, Pan Wei
Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, USA.
Department of Biostatistics, City University of Hong Kong, Kowloon, Hong Kong.
Am J Hum Genet. 2025 Feb 6;112(2):291-300. doi: 10.1016/j.ajhg.2024.12.010. Epub 2025 Jan 9.
Alzheimer disease (AD) is a complex and progressive neurodegenerative disorder that accounts for the majority of individuals with dementia. Here, we aim to identify causal plasma proteins for AD, shedding light on the etiology of AD. We utilized the latest large-scale plasma proteomic data from the UK Biobank Pharma Proteomics Project (UKB-PPP) and AD genome-wide association study (GWAS) summary data from the International Genomics of Alzheimer's Project (IGAP). Via a robust univariate instrumental variable (IV) regression method, we identified causal proteins through cis-protein quantitative trait loci (pQTLs) and (both cis- and trans-)pQTLs. To further reduce potential false positives due to high linkage disequilibrium (LD) of some pQTLs and high correlations among some proteins, we developed a robust multivariate IV regression method, called two-stage constrained maximum likelihood (MV-2ScML), to distinguish direct and confounding/mediating effects of proteins; some key features of the method include its robustness to invalid IVs and applicability to GWAS summary data. Our work highlights some differences between using cis-pQTLs and trans-pQTLs and critical values of multivariate analysis for fine-mapping causal proteins, providing insights into plasma protein pathways to AD.
阿尔茨海默病(AD)是一种复杂的进行性神经退行性疾病,是导致痴呆症的主要原因。在此,我们旨在识别AD的因果血浆蛋白,以阐明AD的病因。我们利用了来自英国生物银行药物蛋白质组学项目(UKB-PPP)的最新大规模血浆蛋白质组学数据以及来自国际阿尔茨海默病基因组计划(IGAP)的AD全基因组关联研究(GWAS)汇总数据。通过一种稳健的单变量工具变量(IV)回归方法,我们通过顺式蛋白质定量性状位点(pQTL)和(顺式和反式)pQTL识别因果蛋白。为了进一步减少由于某些pQTL的高连锁不平衡(LD)和某些蛋白质之间的高相关性导致的潜在假阳性,我们开发了一种稳健的多变量IV回归方法,称为两阶段约束最大似然法(MV-2ScML),以区分蛋白质的直接和混杂/中介效应;该方法的一些关键特性包括其对无效IV的稳健性以及对GWAS汇总数据的适用性。我们的工作突出了使用顺式pQTL和反式pQTL之间的一些差异以及多变量分析对精细定位因果蛋白的临界值,为AD的血浆蛋白途径提供了见解。