Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Department of Surgery, University of Verona, Verona, Italy.
HPB (Oxford). 2024 Nov;26(11):1369-1378. doi: 10.1016/j.hpb.2024.07.415. Epub 2024 Jul 25.
We sought to assess the impact of various perioperative factors on the risk of severe complications and post-surgical mortality using a novel maching learning technique.
Data on patients undergoing resection for HCC were obtained from an international, multi-institutional database between 2000 and 2020. Gradient boosted trees were utilized to construct predictive models.
Among 962 patients who underwent HCC resection, the incidence of severe postoperative complications was 12.7% (n = 122); in-hospital mortality was 2.9% (n = 28). Models that exclusively used preoperative data achieved AUC values of 0.89 (95%CI 0.85 to 0.92) and 0.90 (95%CI 0.84 to 0.96) to predict severe complications and mortality, respectively. Models that combined preoperative and postoperative data achieved AUC values of 0.93 (95%CI 0.91 to 0.96) and 0.92 (95%CI 0.86 to 0.97) for severe morbidity and mortality, respectively. The SHAP algorithm demonstrated that the factor most strongly predictive of severe morbidity and mortality was postoperative day 1 and 3 albumin-bilirubin (ALBI) scores.
Incorporation of perioperative data including ALBI scores using ML techniques can help risk-stratify patients undergoing resection of HCC.
我们旨在使用一种新的机器学习技术评估各种围手术期因素对严重并发症和术后死亡率的影响。
本研究从 2000 年至 2020 年的国际多机构数据库中获取了接受 HCC 切除术的患者数据。使用梯度提升树来构建预测模型。
在 962 例接受 HCC 切除术的患者中,严重术后并发症的发生率为 12.7%(n=122);住院死亡率为 2.9%(n=28)。仅使用术前数据的模型预测严重并发症和死亡率的 AUC 值分别为 0.89(95%CI 0.85 至 0.92)和 0.90(95%CI 0.84 至 0.96)。结合术前和术后数据的模型预测严重发病率和死亡率的 AUC 值分别为 0.93(95%CI 0.91 至 0.96)和 0.92(95%CI 0.86 至 0.97)。SHAP 算法表明,对严重发病率和死亡率预测性最强的因素是术后第 1 天和第 3 天的白蛋白-胆红素(ALBI)评分。
使用 ML 技术纳入围手术期数据(包括 ALBI 评分)可以帮助 HCC 切除术患者进行风险分层。