Suppr超能文献

基于纤维素纳米纤维的复合膜,具有展宽的 MXene 层间距和快速的水分分离,用于湿度传感和湿度致动器。

Cellulose nanofibers-based composite film with broadening MXene layer spacing and rapid moisture separation for humidity sensing and humidity actuators.

机构信息

Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK; College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China.

出版信息

Int J Biol Macromol. 2024 Oct;278(Pt 1):134383. doi: 10.1016/j.ijbiomac.2024.134383. Epub 2024 Aug 3.

Abstract

Based on the basic idea of expanding the interlayer spacing of MXene, utilizing the effect of gallic acid-modified cellulose nanofibers for rapid moisture separation, the flexible sensing and driving composite film with a perfect balance among humidity signal response and mechanical properties was prepared. Inspired by the stacking of autumn fallen leaves, the cellulose nanofibers-based composite films were formed by self-assembly under vacuum filtration of blending gallic acid-modified cellulose nanofibers with MXene. The enhanced mechanical properties (tensile strength 131.1 MPa, puncture load 0.88 N, tearing strength 165.55 N/mm, and elongation at break 16.14 %), humidity sensing (the stable induced voltage 63.7 mV and response/recovery time 3.2/5.1 s), and humidity driving (154.7° bending angle) properties were observed. The synergistic effect of hydrogen bonds, the "pinning effect" arising from the side chains, and the hierarchical layered microstructure contributed to the enhanced performance. This work exemplifies the application of green natural product for preparing intelligent sensing, wearable devices, and biomimetic robots.

摘要

基于扩展 MXene 层间距的基本思想,利用没食子酸改性纤维素纳米纤维的快速水分分离效果,制备了具有湿度信号响应和机械性能完美平衡的柔性传感和驱动复合膜。受秋落叶堆积的启发,通过将没食子酸改性纤维素纳米纤维与 MXene 混合进行真空过滤自组装,形成基于纤维素纳米纤维的复合膜。观察到增强的机械性能(拉伸强度 131.1 MPa、穿刺载荷 0.88 N、撕裂强度 165.55 N/mm 和断裂伸长率 16.14%)、湿度传感(稳定的感应电压 63.7 mV 和响应/恢复时间 3.2/5.1 s)和湿度驱动(154.7°弯曲角度)性能。氢键的协同效应、侧链产生的“钉扎效应”和分层层状微观结构有助于提高性能。这项工作为制备智能传感、可穿戴设备和仿生机器人展示了绿色天然产物的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验