Suppr超能文献

基于生物标志物构建非小细胞肺癌肝转移的列线图模型。

Construction of a nomogram model based on biomarkers for liver metastasis in non-small cell lung cancer.

机构信息

Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.

Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.

出版信息

Thorac Cancer. 2024 Sep;15(26):1897-1911. doi: 10.1111/1759-7714.15417. Epub 2024 Aug 4.

Abstract

BACKGROUND

Patients with non-small cell lung cancer (NSCLC) with liver metastasis have a poor prognosis, and there are no reliable biomarkers for predicting disease progression. Currently, no recognized and reliable prediction model exists to anticipate liver metastasis in NSCLC, nor have the risk factors influencing its onset time been thoroughly explored.

METHODS

This study conducted a retrospective analysis of 434 NSCLC patients from two hospitals to assess the association between the risk and timing of liver metastasis, as well as several variables.

RESULTS

The patients were divided into two groups: those without liver metastasis and those with liver metastasis. We constructed a nomogram model for predicting liver metastasis in NSCLC, incorporating elements such as T stage, N stage, M stage, lack of past radical lung cancer surgery, and programmed death ligand 1 (PD-L1) levels. Furthermore, NSCLC patients with wild-type EGFR, no prior therapy with tyrosine kinase inhibitors (TKIs), and no prior radical lung cancer surgery showed an elevated risk of early liver metastasis.

CONCLUSION

In conclusion, the nomogram model developed in this study has the potential to become a simple, intuitive, and customizable clinical tool for assessing the risk of liver metastasis in NSCLC patients following validation. Furthermore, it provides a framework for investigating the timing of metachronous liver metastasis.

摘要

背景

患有肝转移的非小细胞肺癌(NSCLC)患者预后较差,目前尚无可靠的生物标志物来预测疾病进展。目前,尚不存在公认且可靠的预测模型来预测 NSCLC 中的肝转移,也未深入探讨影响其发病时间的危险因素。

方法

本研究对来自两家医院的 434 名 NSCLC 患者进行了回顾性分析,以评估风险和肝转移时间之间的关联,以及其他几个变量。

结果

患者被分为两组:无肝转移组和有肝转移组。我们构建了一个用于预测 NSCLC 肝转移的列线图模型,其中纳入了 T 分期、N 分期、M 分期、既往未行根治性肺癌手术、程序性死亡配体 1(PD-L1)水平等因素。此外,EGFR 野生型、既往未接受酪氨酸激酶抑制剂(TKIs)治疗、且既往未行根治性肺癌手术的 NSCLC 患者发生肝转移的风险增加。

结论

总之,本研究开发的列线图模型具有成为一种简单、直观和可定制的临床工具的潜力,可用于验证后评估 NSCLC 患者肝转移的风险。此外,它为研究肝转移的时间提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a21/11462952/0a1a50c5fd68/TCA-15-1897-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验