Suppr超能文献

基于病理因素的预测结直肠癌同步肝转移发生的列线图:单中心回顾性研究。

Nomogram for predicting occurrence of synchronous liver metastasis in colorectal cancer: a single-center retrospective study based on pathological factors.

机构信息

Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

World J Surg Oncol. 2022 Feb 19;20(1):39. doi: 10.1186/s12957-022-02516-2.

Abstract

PURPOSE

The purpose of this study was to explore the risk factors for synchronous liver metastasis (LM) of colorectal cancer (CRC) and to construct a nomogram for predicting the occurrence of synchronous LM based on baseline and pathological information.

METHODS

The baseline and pathological information of 3190 CRC patients were enrolled in the study from the Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University between 2012 and 2020. All patients were divided into development and validation cohorts with the 1:1 ratio. The characters of LM and none-LM patients in newly diagnosed colorectal cancer were utilized to explore the risk factors for synchronous LM with the univariate and multivariate logistic regression analyses. A predictive nomogram was constructed by using an R tool. In addition, receiver operating characteristic (ROC) curves was calculated to describe the discriminability of the nomogram. A calibration curve was plotted to compare the predicted and observed results of the nomogram. Decision-making curve analysis (DCA) was used to evaluate the clinical effect of nomogram.

RESULTS

The nomogram consisted of six features including tumor site, vascular invasion (VI), T stage, N stage, preoperative CEA, and CA-199 level. ROC curves for the LM nomogram indicated good discrimination in the development (AUC = 0.885, 95% CI 0.854-0.916) and validation cohort (AUC = 0.857, 95% CI 0.821-0.893). The calibration curve showed that the prediction results of the nomogram were in good agreement with the actual observation results. Moreover, the DCA curves determined the clinical application value of predictive nomogram.

CONCLUSIONS

The pathologic-based nomogram could help clinicians to predict the occurrence of synchronous LM in postoperative CRC patients and provide a reference to perform appropriate metastatic screening plans and rational therapeutic options for the special population.

摘要

目的

本研究旨在探讨结直肠癌(CRC)同步肝转移(LM)的危险因素,并基于基线和病理信息构建预测同步 LM 发生的列线图。

方法

本研究纳入了 2012 年至 2020 年期间哈尔滨医科大学附属第二医院结直肠外科的 3190 例 CRC 患者的基线和病理信息。所有患者按 1:1 的比例分为开发和验证队列。利用单变量和多变量逻辑回归分析,探讨新诊断 CRC 中 LM 和非 LM 患者的特征,以探讨同步 LM 的危险因素。使用 R 工具构建预测列线图。此外,计算受试者工作特征(ROC)曲线以描述列线图的区分能力。绘制校准曲线以比较列线图的预测和观察结果。决策曲线分析(DCA)用于评估列线图的临床效果。

结果

该列线图由 6 个特征组成,包括肿瘤部位、血管侵犯(VI)、T 分期、N 分期、术前 CEA 和 CA-199 水平。LM 列线图在开发队列(AUC=0.885,95%CI 0.854-0.916)和验证队列(AUC=0.857,95%CI 0.821-0.893)中的 ROC 曲线均具有良好的区分度。校准曲线表明,列线图的预测结果与实际观察结果吻合良好。此外,DCA 曲线确定了预测列线图的临床应用价值。

结论

基于病理的列线图可以帮助临床医生预测术后 CRC 患者同步 LM 的发生,并为特殊人群提供适当的转移筛查计划和合理的治疗选择提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acfa/8857813/96f3263d22ef/12957_2022_2516_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验