Suppr超能文献

我们所了解的关于概念漂移的一两件事——演化环境中监测的综述。B部分:定位和解释概念漂移。

One or two things we know about concept drift-a survey on monitoring in evolving environments. Part B: locating and explaining concept drift.

作者信息

Hinder Fabian, Vaquet Valerie, Hammer Barbara

机构信息

Faculty of Technology, Bielefeld University, Bielefeld, North Rhine-Westphalia, Germany.

出版信息

Front Artif Intell. 2024 Jul 19;7:1330258. doi: 10.3389/frai.2024.1330258. eCollection 2024.

Abstract

In an increasing number of industrial and technical processes, machine learning-based systems are being entrusted with supervision tasks. While they have been successfully utilized in many application areas, they frequently are not able to generalize to changes in the observed data, which environmental changes or degrading sensors might cause. These changes, commonly referred to as concept drift can trigger malfunctions in the used solutions which are safety-critical in many cases. Thus, detecting and analyzing concept drift is a crucial step when building reliable and robust machine learning-driven solutions. In this work, we consider the setting of unsupervised data streams which is highly relevant for different monitoring and anomaly detection scenarios. In particular, we focus on the tasks of localizing and explaining concept drift which are crucial to enable human operators to take appropriate action. Next to providing precise mathematical definitions of the problem of concept drift localization, we survey the body of literature on this topic. By performing standardized experiments on parametric artificial datasets we provide a direct comparison of different strategies. Thereby, we can systematically analyze the properties of different schemes and suggest first guidelines for practical applications. Finally, we explore the emerging topic of explaining concept drift.

摘要

在越来越多的工业和技术流程中,基于机器学习的系统被委以监督任务。虽然它们已在许多应用领域成功应用,但往往无法适应观测数据的变化,而环境变化或传感器性能下降可能导致这些变化。这些变化通常被称为概念漂移,可能会引发所用解决方案中的故障,在许多情况下这些故障对安全至关重要。因此,检测和分析概念漂移是构建可靠且强大的机器学习驱动解决方案的关键步骤。在这项工作中,我们考虑无监督数据流的情况,这与不同的监测和异常检测场景高度相关。特别是,我们专注于定位和解释概念漂移的任务,这对于使人类操作员能够采取适当行动至关重要。除了为概念漂移定位问题提供精确的数学定义外,我们还对该主题的文献进行了综述。通过在参数化人工数据集上进行标准化实验,我们对不同策略进行了直接比较。由此,我们可以系统地分析不同方案的特性,并为实际应用提出初步指导方针。最后,我们探讨了解释概念漂移这一新兴主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5f1/11294200/72a5c2ea6695/frai-07-1330258-g0001.jpg

相似文献

本文引用的文献

2
A Continual Learning Survey: Defying Forgetting in Classification Tasks.持续学习调查:在分类任务中对抗遗忘
IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3366-3385. doi: 10.1109/TPAMI.2021.3057446. Epub 2022 Jun 3.
3
XAI-Explainable artificial intelligence.可解释人工智能
Sci Robot. 2019 Dec 18;4(37). doi: 10.1126/scirobotics.aay7120.
4
A Survey of Methods for Time Series Change Point Detection.时间序列变化点检测方法综述
Knowl Inf Syst. 2017 May;51(2):339-367. doi: 10.1007/s10115-016-0987-z. Epub 2016 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验