IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3366-3385. doi: 10.1109/TPAMI.2021.3057446. Epub 2022 Jun 3.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern: (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods; and (4) baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
人工神经网络在解决特定刚性任务的分类问题方面表现出色,通过从明显的训练阶段进行泛化学习行为来获取知识。由此产生的网络类似于静态的知识实体,努力扩展知识而不针对原始任务,这会导致灾难性遗忘。持续学习将这种范式转变为可以在不同任务上不断积累知识的网络,而无需从头重新训练。我们专注于任务增量分类,其中任务按顺序到达,并通过明确的边界进行划分。我们的主要贡献包括:(1)对最新技术的分类法和广泛概述;(2)一种新颖的框架,用于不断确定持续学习者的稳定性-可塑性权衡;(3)对 11 种最新持续学习方法的全面实验比较;以及(4)基线。我们在三个基准上对方法的优缺点进行了实证研究,考虑了 Tiny Imagenet 和大型不平衡的 iNaturalist 以及一系列识别数据集。我们研究了模型容量、权重衰减和辍学正则化的影响,以及任务呈现的顺序,并从所需的内存、计算时间和存储方面定性比较了方法。