Siregar Syahril, Nurhikmat Asep, Amdani Rima Zuriah, Hatmi Retno Utami, Kobarsih Mahargono, Kusumaningrum Annisa, Karim Mirwan Ardiansyah, Dameswari Amarilia Harsanti, Siswanto Nugroho, Siswoprayogi Siswoprayogi, Yuliyanto Ponco
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia.
Research Center for Food Technology and Processing-National Research and Innovation Agency of Indonesia, Jl. Jogja-Wonosari KM 31.5, Playen, Gunungkidul, Yogyakarta 55861, Indonesia.
ACS Omega. 2024 Jul 16;9(30):32760-32768. doi: 10.1021/acsomega.4c02816. eCollection 2024 Jul 30.
This study presents an innovative approach for estimating the proximate composition of diverse rice varieties using attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and chemometric techniques. Principal component analysis (PCA) reveals distinct separations among the seven rice varieties based on their FTIR spectra. Robust partial least squares (PLS) regression models, developed with high calibration ( ) values from 0.778 for protein up to 0.941 for moisture, demonstrate high accuracy in predicting proximate composition. The root mean squared error (RMSE) in percentage values, indicative of prediction accuracy, were low across all proximate components. To ensure the response variable of regression, proximate composition measurements were taken five times, while FTIR spectra were scanned tens of times, employing random numbers around the average with the same standard deviation as the measurement. Notably, the study emphasizes the pivotal role of the amide-III band in protein determination, alongside specific wavenumber regions associated with molecular changes in proximate components. This research underscores the potential of ATR-FTIR spectroscopy and chemometrics for rapid and accurate proximate assessment in food science and agriculture.
本研究提出了一种创新方法,利用衰减全反射傅里叶变换红外(ATR-FTIR)光谱和化学计量技术来估算不同水稻品种的近似成分。主成分分析(PCA)基于七种水稻品种的FTIR光谱揭示了它们之间的明显区分。通过稳健的偏最小二乘(PLS)回归模型进行预测,蛋白质的校准值高达0.778,水分的校准值高达0.941,在预测近似成分方面显示出高精度。以百分比值表示的预测准确性的均方根误差(RMSE)在所有近似成分中都很低。为确保回归的响应变量,对近似成分进行了五次测量,同时对FTIR光谱进行了数十次扫描,采用围绕平均值的随机数,其标准差与测量值相同。值得注意的是,该研究强调了酰胺III带在蛋白质测定中的关键作用,以及与近似成分分子变化相关的特定波数区域。本研究强调了ATR-FTIR光谱和化学计量学在食品科学和农业中进行快速准确的近似评估的潜力。