Innocenti Matteo, Secci Gregorio, Zanna Luigi, Sani Giacomo, Stimolo Davide, Matassi Fabrizio, Carulli Christian, Civinini Roberto
Orthopaedic Clinic, University of Florence, Florence, Italy.
Arthroplast Today. 2024 Jul 20;28:101464. doi: 10.1016/j.artd.2024.101464. eCollection 2024 Aug.
Tibiofemoral components rotational congruency affects the total knee arthroplasty (TKA) success. The smart insert sensor (I-S) helps to establish tibial component rotation reciprocally to a fixed femoral rotation. We aimed (1) to validate the use of I-S as a possible tool to reach reproducible reciprocal femorotibial rotation (RftR) in TKA independently from anatomic landmarks, reducing outliers in combined and mismatched femorotibial rotation (CftR and MMftR, respectively) positioning and (2) to validate the "curve-on-curve" method for a specific type of asymmetrical tibial component.
From February 2018, we conducted a prospective case-control study including 106 patients undergoing TKA. Patients were divided into 2 groups based on the method used to establish tibial component rotation: with the I-S use (group A, n = 53) and with the standard "curve-on-curve" technique (group B, n = 53). Rotational alignment was calculated using the Berger protocol with postoperative computed tomography scanning. Alignment parameters measured were tibial and femoral component rotations (tR, fR), the CftR, the MMftR, and the RftR.
Intraoperative rotation measured by I-S correlated the best with RftR (r = 0.84; < .001) at the post-operative CT scanning. No significant differences were found between groups A and B regarding all types of rotation (fR: = .774; tR: = .467; CftR: = .847) except for MMftR ( = .036) and RftR ( = .023). There were no outliers in group A but 27 and 12 outliers in group B for MMftR and CftR respectively ( < .001; = .032).
The TKA components' rotation established using a smart I-S intraoperatively is ascribable to the RftR at postoperative computed tomography scan. The I-S helps reduce outliers in the CftR and MMftR. An asymmetrical tibial base plate implanted using the curve-on-curve technique does not create a neutral reciprocal femorotibial rotation significantly increasing the number of cases with mismatched femorotibial internal rotation.
胫股组件的旋转一致性影响全膝关节置换术(TKA)的成功率。智能插入式传感器(I-S)有助于相对于固定的股骨旋转来确定胫骨组件的旋转。我们旨在(1)验证I-S作为一种可能的工具在TKA中实现可重复的相互股骨-胫骨旋转(RftR)的用途,该方法独立于解剖标志,减少组合和不匹配的股骨-胫骨旋转(分别为CftR和MMftR)定位中的异常值,以及(2)验证针对特定类型不对称胫骨组件的“曲线对曲线”方法。
从2018年2月起,我们进行了一项前瞻性病例对照研究,纳入106例行TKA的患者。根据确定胫骨组件旋转的方法将患者分为两组:使用I-S(A组,n = 53)和使用标准“曲线对曲线”技术(B组,n = 53)。使用Berger方案并通过术后计算机断层扫描计算旋转对线。测量的对线参数包括胫骨和股骨组件旋转(tR,fR)、CftR、MMftR和RftR。
术后CT扫描时,I-S术中测量的旋转与RftR的相关性最佳(r = 0.84;P <.001)。除MMftR(P =.036)和RftR(P =.023)外,A组和B组在所有类型的旋转方面(fR:P =.774;tR:P =.467;CftR:P =.847)均未发现显著差异。A组没有异常值,但B组MMftR和CftR分别有27个和12个异常值(P <.001;P =.032)。
术中使用智能I-S确定的TKA组件旋转在术后计算机断层扫描时可归因于RftR。I-S有助于减少CftR和MMftR中的异常值。使用曲线对曲线技术植入的不对称胫骨基板不会产生中性的相互股骨-胫骨旋转,显著增加了股骨-胫骨内旋不匹配的病例数。