Suppr超能文献

通过结合计算机辅助胸部X光检查和痰液标本合并扩大结核病分子诊断覆盖范围:来自四个高负担国家的建模研究

Expanding molecular diagnostic coverage for tuberculosis by combining computer-aided chest radiography and sputum specimen pooling: a modeling study from four high-burden countries.

作者信息

Codlin Andrew James, Vo Luan Nguyen Quang, Garg Tushar, Banu Sayera, Ahmed Shahriar, John Stephen, Abdulkarim Suraj, Muyoyeta Monde, Sanjase Nsala, Wingfield Tom, Iem Vibol, Squire Bertie, Creswell Jacob

机构信息

Friends for International TB Relief, Hanoi, Viet Nam.

Karolinska Institutet, Stockholm, Sweden.

出版信息

BMC Glob Public Health. 2024;2(1):52. doi: 10.1186/s44263-024-00081-2. Epub 2024 Aug 1.

Abstract

BACKGROUND

In 2022, fewer than half of persons with tuberculosis (TB) had access to molecular diagnostic tests for TB due to their high costs. Studies have found that the use of artificial intelligence (AI) software for chest X-ray (CXR) interpretation and sputum specimen pooling can each reduce the cost of testing. We modeled the combination of both strategies to estimate potential savings in consumables that could be used to expand access to molecular diagnostics.

METHODS

We obtained Xpert testing and positivity data segmented into deciles by AI probability scores for TB from the community- and healthcare facility-based active case finding conducted in Bangladesh, Nigeria, Viet Nam, and Zambia. AI scores in the model were based on CAD4TB version 7 (Zambia) and qXR (all other countries). We modeled four ordinal screening and testing approaches involving AI-aided CXR interpretation to indicate individual and pooled testing. Setting a false negative rate of 5%, for each approach we calculated additional and cumulative savings over the baseline of universal Xpert testing, as well as the theoretical expansion in diagnostic coverage.

RESULTS

In each country, the optimal screening and testing approach was to use AI to rule out testing in deciles with low AI scores and to guide pooled vs individual testing in persons with moderate and high AI scores, respectively. This approach yielded cumulative savings in Xpert tests over baseline ranging from 50.8% in Zambia to 57.5% in Nigeria and 61.5% in Bangladesh and Viet Nam. Using these savings, diagnostic coverage theoretically could be expanded by 34% to 160% across the different approaches and countries.

CONCLUSIONS

Using AI software data generated during CXR interpretation to inform a differentiated pooled testing strategy may optimize TB diagnostic test use, and could extend molecular tests to more people who need them. The optimal AI thresholds and pooled testing strategy varied across countries, which suggests that bespoke screening and testing approaches may be needed for differing populations and settings.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1186/s44263-024-00081-2.

摘要

背景

2022年,由于成本高昂,不到一半的结核病患者能够获得结核病分子诊断检测。研究发现,使用人工智能(AI)软件解读胸部X光(CXR)和痰液样本合并检测均可降低检测成本。我们对这两种策略的组合进行了建模,以估计耗材方面的潜在节省,这些节省可用于扩大分子诊断检测的可及性。

方法

我们从在孟加拉国、尼日利亚、越南和赞比亚开展的社区及医疗机构主动病例发现中获取了按AI结核病概率评分划分为十分位数的Xpert检测及阳性数据。模型中的AI评分基于CAD4TB版本7(赞比亚)和qXR(其他所有国家)。我们对四种序贯筛查和检测方法进行了建模,这些方法涉及AI辅助的CXR解读,以指示个体检测和合并检测。设定假阴性率为5%,对于每种方法,我们计算了相对于通用Xpert检测基线的额外节省和累积节省,以及诊断覆盖率的理论扩大情况。

结果

在每个国家,最佳的筛查和检测方法是使用AI排除AI评分低的十分位数人群的检测,并分别指导AI评分中等和高的人群进行合并检测还是个体检测。这种方法相对于基线在Xpert检测方面产生的累积节省幅度在赞比亚为50.8%,在尼日利亚为57.5%,在孟加拉国和越南为61.5%。利用这些节省,在不同方法和国家中,诊断覆盖率理论上可扩大34%至160%。

结论

利用CXR解读过程中生成的AI软件数据来制定差异化的合并检测策略,可能会优化结核病诊断检测的使用,并能将分子检测扩展到更多有需求的人群。最佳的AI阈值和合并检测策略因国家而异,这表明针对不同人群和环境可能需要定制化的筛查和检测方法。

补充信息

在线版本包含可在10.1186/s44263-024-00081-2获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70a2/11622885/b4ffcaa68ae8/44263_2024_81_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验