Suppr超能文献

NSTU - BDTAKA:一个用于孟加拉国纸币检测与识别的开放数据集。

NSTU-BDTAKA: An open dataset for Bangladeshi paper currency detection and recognition.

作者信息

Rafi Md Jubayar Alam, Rony Mohammad, Majadi Nazia

机构信息

Department of Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.

出版信息

Data Brief. 2024 Jul 3;55:110701. doi: 10.1016/j.dib.2024.110701. eCollection 2024 Aug.

Abstract

One of the most popular and well-established forms of payment in use today is paper money. Handling paper money might be challenging for those with vision impairments. Assistive technology has been reinventing itself throughout time to better serve the elderly and disabled people. To detect paper currency and extract other useful information from them, image processing techniques and other advanced technologies, such as Artificial Intelligence, Deep Learning, etc., can be used. In this paper, we present a meticulously curated and comprehensive dataset named 'NSTU-BDTAKA' tailored for the simultaneous detection and recognition of a specific object of cultural significance - the Bangladeshi paper currency (in Bengali it is called 'Taka'). This research aims to facilitate the development and evaluation of models for both taka detection and recognition tasks, offering a rich resource for researchers and practitioners alike. The dataset is divided into two distinct components: (i) taka detection, and (ii) taka recognition. The taka detection subset comprises 3,111 high-resolution images, each meticulously annotated with rectangular bounding boxes that encompass instances of the taka. These annotations serve as ground truth for training and validating object detection models, and we adopt the state-of-the-art YOLOv5 architecture for this purpose. In the taka recognition subset, the dataset has been extended to include a vast collection of 28,875 images, each showcasing various instances of the taka captured in diverse contexts and environments. The recognition dataset is designed to address the nuanced task of taka recognition providing researchers with a comprehensive set of images to train, validate, and test recognition models. This subset encompasses challenges such as variations in lighting, scale, orientation, and occlusion, further enhancing the robustness of developed recognition algorithms. The dataset NSTU-BDTAKA not only serves as a benchmark for taka detection and recognition but also fosters advancements in object detection and recognition methods that can be extrapolated to other cultural artifacts and objects. We envision that the dataset will catalyze research efforts in the field of computer vision, enabling the development of more accurate, robust, and efficient models for both detection and recognition tasks.

摘要

当今使用的最流行且成熟的支付方式之一是纸币。对于视力有障碍的人来说,处理纸币可能具有挑战性。随着时间的推移,辅助技术一直在自我革新,以更好地服务老年人和残疾人。为了检测纸币并从中提取其他有用信息,可以使用图像处理技术以及其他先进技术,如人工智能、深度学习等。在本文中,我们展示了一个精心策划且全面的数据集,名为“NSTU - BDTAKA”,该数据集专为同时检测和识别具有文化意义的特定对象——孟加拉国纸币(孟加拉语称为“塔卡”)而量身定制。本研究旨在促进塔卡检测和识别任务模型的开发与评估,为研究人员和从业者提供丰富的资源。该数据集分为两个不同的部分:(i)塔卡检测,以及(ii)塔卡识别。塔卡检测子集包含3111张高分辨率图像,每张图像都精心标注了围绕塔卡实例的矩形边界框。这些标注用作训练和验证目标检测模型的地面真值,为此我们采用了最先进的YOLOv5架构。在塔卡识别子集中,数据集已扩展到包括28875张图像的大量集合,每张图像展示了在不同背景和环境中捕获的塔卡的各种实例。识别数据集旨在解决塔卡识别的细微任务,为研究人员提供一组全面的图像来训练、验证和测试识别模型。该子集包含诸如光照、尺度、方向和遮挡等变化带来的挑战,进一步增强了所开发识别算法的鲁棒性。数据集NSTU - BDTAKA不仅作为塔卡检测和识别的基准,还促进了目标检测和识别方法的进步,这些方法可以外推到其他文化文物和对象。我们设想该数据集将推动计算机视觉领域的研究工作,为检测和识别任务开发出更准确、鲁棒和高效的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9761/11296233/bc2b2ffc5187/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验