Suppr超能文献

孟加拉塔卡:一个用于孟加拉国纸币分类的数据集。

BanglaTaka: A dataset for classification of Bangladeshi banknotes.

作者信息

Nuhash Md Naimul Islam, Akter Sadia

机构信息

Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh.

出版信息

Data Brief. 2025 Jul 6;61:111853. doi: 10.1016/j.dib.2025.111853. eCollection 2025 Aug.

Abstract

Automated classification of banknotes is essential for financial security and e-transaction systems. Conventional manual authentication is time-consuming and error-prone, which necessitates automated systems. This article introduces BanglaNotes, a benchmark dataset for Bangladeshi banknote denomination classification. The dataset contains 5073 images of Bangladeshi paper currency of nine denominations (2, 5, 10, 20, 50, 100, 200, 500, and 1000 BDT), with high quality and consistent representation. Every image in the dataset is labeled according to its denomination. The dataset is suitable for training and testing machine learning algorithms for currency classification and it supports research in financial automation and deep learning-based classification algorithms. It also offers a benchmark for developing robust algorithms for banknotes' real-life applications in banks, mobile payment systems, and ATMs. The dataset is publicly released to promote innovation and further research in banknote classification and recognition.

摘要

纸币的自动分类对于金融安全和电子交易系统至关重要。传统的人工认证既耗时又容易出错,因此需要自动化系统。本文介绍了BanglaNotes,这是一个用于孟加拉国纸币面额分类的基准数据集。该数据集包含九种面额(2、5、10、20、50、100、200、500和1000孟加拉塔卡)的5073张孟加拉国纸币图像,具有高质量和一致的表示。数据集中的每张图像都根据其面额进行了标注。该数据集适用于训练和测试用于货币分类的机器学习算法,支持金融自动化和基于深度学习的分类算法研究。它还为开发适用于银行、移动支付系统和自动取款机中纸币实际应用的强大算法提供了基准。该数据集已公开发布,以促进纸币分类和识别方面的创新及进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4968/12284552/1fbe6ad50a9d/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验