Wang Seunghyeon, Eum Ikchul, Park Sangkyun, Kim Jaejun
Department of Architectural Engineering, Hanyang University, Seungdong-Gu, Seoul 133791, the Republic of Korea.
Data Brief. 2024 Jul 14;55:110720. doi: 10.1016/j.dib.2024.110720. eCollection 2024 Aug.
Accurate inspection of rebars in Reinforced Concrete (RC) structures is essential and requires careful counting. Deep learning algorithms utilizing object detection can facilitate this process through Unmanned Aerial Vehicle (UAV) imagery. However, their effectiveness depends on the availability of large, diverse, and well-labelled datasets. This article details the creation of a dataset specifically for counting rebars using deep learning-based object detection methods. The dataset comprises 874 raw images, divided into three subsets: 524 images for training (60 %), 175 for validation (20 %), and 175 for testing (20 %). To enhance the training data, we applied eight augmentation techniques-brightness, contrast, perspective, rotation, scale, shearing, translation, and blurring-exclusively to the training subset. This resulted in nine distinct datasets: one for each augmentation technique and one combining all techniques in augmentation sets. Expert annotators labelled the dataset in VOC XML format. While this research focuses on rebar counting, the raw dataset can be adapted for other tasks, such as estimating rebar diameter or classifying rebar shapes, by providing the necessary annotations.
准确检测钢筋混凝土(RC)结构中的钢筋至关重要,且需要仔细计数。利用目标检测的深度学习算法可通过无人机(UAV)图像来推动这一过程。然而,其有效性取决于是否有大量、多样且标注良好的数据集。本文详细介绍了一个专门用于使用基于深度学习的目标检测方法计数钢筋的数据集的创建过程。该数据集包含874张原始图像,分为三个子集:524张用于训练(60%),175张用于验证(20%),175张用于测试(20%)。为了增强训练数据,我们仅对训练子集应用了八种增强技术——亮度、对比度、透视、旋转、缩放、剪切、平移和模糊。这产生了九个不同的数据集:每种增强技术对应一个,还有一个在增强集中组合了所有技术。专业注释人员以VOC XML格式为数据集进行标注。虽然本研究专注于钢筋计数,但通过提供必要的注释,原始数据集可适用于其他任务,如估计钢筋直径或对钢筋形状进行分类。