Suppr超能文献

使用GPT模型从临床记录中提取社会决定因素和家族病史的最少指令零样本学习

Zero-shot Learning with Minimum Instruction to Extract Social Determinants and Family History from Clinical Notes using GPT Model.

作者信息

Bhate Neel Jitesh, Mittal Ansh, He Zhe, Luo Xiao

机构信息

Department of CIS, IUPUI, Indianapolis, IN, USA.

School of Information, Florida State University, Tallahassee, FL, USA.

出版信息

Proc IEEE Int Conf Big Data. 2023 Dec;2023:1476-1480. doi: 10.1109/BigData59044.2023.10386811.

Abstract

Demographics, social determinants of health, and family history documented in the unstructured text within the electronic health records are increasingly being studied to understand how this information can be utilized with the structured data to improve healthcare outcomes. After the GPT models were released, many studies have applied GPT models to extract this information from the narrative clinical notes. Different from the existing work, our research focuses on investigating the zero-shot learning on extracting this information together by providing minimum information to the GPT model. We utilize de-identified real-world clinical notes annotated for demographics, various social determinants, and family history information. Given that the GPT model might provide text different from the text in the original data, we explore two sets of evaluation metrics, including the traditional NER evaluation metrics and semantic similarity evaluation metrics, to completely understand the performance. Our results show that the GPT-3.5 method achieved an average of 0.975 F1 on demographics extraction, 0.615 F1 on social determinants extraction, and 0.722 F1 on family history extraction. We believe these results can be further improved through model fine-tuning or few-shots learning. Through the case studies, we also identified the limitations of the GPT models, which need to be addressed in future research.

摘要

电子健康记录中非结构化文本中记录的人口统计学、健康的社会决定因素和家族史正越来越多地被研究,以了解如何将这些信息与结构化数据结合使用,以改善医疗保健结果。GPT模型发布后,许多研究已应用GPT模型从叙述性临床记录中提取此信息。与现有工作不同,我们的研究重点是通过向GPT模型提供最少信息来研究一起提取此信息的零样本学习。我们使用针对人口统计学、各种社会决定因素和家族史信息进行注释的去识别真实世界临床记录。鉴于GPT模型可能提供与原始数据中的文本不同的文本,我们探索了两组评估指标,包括传统的命名实体识别评估指标和语义相似性评估指标,以全面了解性能。我们的结果表明,GPT-3.5方法在人口统计学提取方面的F1平均为0.975,在社会决定因素提取方面的F1为0.615,在家族史提取方面的F1为0.722。我们相信,通过模型微调或少样本学习,这些结果可以进一步提高。通过案例研究,我们还确定了GPT模型的局限性,这些局限性需要在未来的研究中加以解决。

相似文献

本文引用的文献

4
Improving child health through Big Data and data science.通过大数据和数据科学改善儿童健康。
Pediatr Res. 2023 Jan;93(2):342-349. doi: 10.1038/s41390-022-02264-9. Epub 2022 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验