Suppr超能文献

生物医学与健康信息学中的大语言模型:文献计量分析综述

Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis.

作者信息

Yu Huizi, Fan Lizhou, Li Lingyao, Zhou Jiayan, Ma Zihui, Xian Lu, Hua Wenyue, He Sijia, Jin Mingyu, Zhang Yongfeng, Gandhi Ashvin, Ma Xin

机构信息

University of Michigan, Ann Arbor, MI USA.

Stanford University, Stanford, CA USA.

出版信息

J Healthc Inform Res. 2024 Sep 14;8(4):658-711. doi: 10.1007/s41666-024-00171-8. eCollection 2024 Dec.

Abstract

Large language models (LLMs) have rapidly become important tools in Biomedical and Health Informatics (BHI), potentially enabling new ways to analyze data, treat patients, and conduct research. This study aims to provide a comprehensive overview of LLM applications in BHI, highlighting their transformative potential and addressing the associated ethical and practical challenges. We reviewed 1698 research articles from January 2022 to December 2023, categorizing them by research themes and diagnostic categories. Additionally, we conducted network analysis to map scholarly collaborations and research dynamics. Our findings reveal a substantial increase in the potential applications of LLMs to a variety of BHI tasks, including clinical decision support, patient interaction, and medical document analysis. Notably, LLMs are expected to be instrumental in enhancing the accuracy of diagnostic tools and patient care protocols. The network analysis highlights dense and dynamically evolving collaborations across institutions, underscoring the interdisciplinary nature of LLM research in BHI. A significant trend was the application of LLMs in managing specific disease categories, such as mental health and neurological disorders, demonstrating their potential to influence personalized medicine and public health strategies. LLMs hold promising potential to further transform biomedical research and healthcare delivery. While promising, the ethical implications and challenges of model validation call for rigorous scrutiny to optimize their benefits in clinical settings. This survey serves as a resource for stakeholders in healthcare, including researchers, clinicians, and policymakers, to understand the current state and future potential of LLMs in BHI.

摘要

大语言模型(LLMs)已迅速成为生物医学与健康信息学(BHI)中的重要工具,有可能开创分析数据、治疗患者和开展研究的新途径。本研究旨在全面概述大语言模型在生物医学与健康信息学中的应用,突出其变革潜力,并应对相关的伦理和实际挑战。我们回顾了2022年1月至2023年12月期间的1698篇研究文章,按研究主题和诊断类别进行分类。此外,我们进行了网络分析,以描绘学术合作和研究动态。我们的研究结果显示,大语言模型在各种生物医学与健康信息学任务中的潜在应用大幅增加,包括临床决策支持、患者互动和医学文档分析。值得注意的是,大语言模型有望在提高诊断工具和患者护理方案的准确性方面发挥重要作用。网络分析突出了各机构之间密集且动态发展的合作,强调了生物医学与健康信息学中基于大语言模型研究的跨学科性质。一个显著趋势是大语言模型在管理特定疾病类别(如心理健康和神经疾病)方面的应用,这表明它们有潜力影响个性化医疗和公共卫生策略。大语言模型在进一步变革生物医学研究和医疗服务方面具有广阔前景。虽然前景广阔,但模型验证的伦理影响和挑战需要严格审查,以在临床环境中优化其效益。这项调查为医疗保健领域的利益相关者(包括研究人员、临床医生和政策制定者)提供了一个资源工具,以了解大语言模型在生物医学与健康信息学中的现状和未来潜力。

相似文献

引用本文的文献

7
The Development Landscape of Large Language Models for Biomedical Applications.用于生物医学应用的大语言模型的发展态势
Annu Rev Biomed Data Sci. 2025 Aug;8(1):251-274. doi: 10.1146/annurev-biodatasci-102224-074736. Epub 2025 Apr 1.

本文引用的文献

1
3
Prompt Tuning in Biomedical Relation Extraction.生物医学关系抽取中的提示调优
J Healthc Inform Res. 2024 Feb 29;8(2):206-224. doi: 10.1007/s41666-024-00162-9. eCollection 2024 Jun.
4
Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models.使用大语言模型识别和提取罕见疾病及其表型
J Healthc Inform Res. 2024 Jan 5;8(2):438-461. doi: 10.1007/s41666-023-00155-0. eCollection 2024 Jun.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验