Suppr超能文献

时空点模式的非参数二阶估计。

Nonparametric second-order estimation for spatiotemporal point patterns.

机构信息

School of Statistics and Data Science, Nankai University, Tianjian, 300071, P.R. China.

School of Mathematics, Sun Yat-sen University, Guangzhou, 510275, P.R. China.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae071.

Abstract

Many existing methodologies for analyzing spatiotemporal point patterns are developed based on the assumption of stationarity in both space and time for the second-order intensity or pair correlation. In practice, however, such an assumption often lacks validity or proves to be unrealistic. In this paper, we propose a novel and flexible nonparametric approach for estimating the second-order characteristics of spatiotemporal point processes, accommodating non-stationary temporal correlations. Our proposed method employs kernel smoothing and effectively accounts for spatial and temporal correlations differently. Under a spatially increasing-domain asymptotic framework, we establish consistency of the proposed estimators, which can be constructed using different first-order intensity estimators to enhance practicality. Simulation results reveal that our method, in comparison with existing approaches, significantly improves statistical efficiency. An application to a COVID-19 dataset further illustrates the flexibility and interpretability of our procedure.

摘要

许多现有的时空点模式分析方法都是基于二阶强度或对关联在空间和时间上的平稳性假设而开发的。然而,在实践中,这种假设往往缺乏有效性或被证明是不现实的。在本文中,我们提出了一种新颖而灵活的非参数方法来估计时空点过程的二阶特征,适应非平稳的时间相关性。我们提出的方法采用核平滑,并有效地以不同的方式考虑空间和时间相关性。在空间递增域渐近框架下,我们证明了所提出估计量的一致性,这些估计量可以使用不同的一阶强度估计量来构建,以增强实用性。模拟结果表明,与现有方法相比,我们的方法显著提高了统计效率。对 COVID-19 数据集的应用进一步说明了我们方法的灵活性和可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验