Suppr超能文献

用于空间聚类数据的高效成对复合似然估计

Efficient pairwise composite likelihood estimation for spatial-clustered data.

作者信息

Bai Yun, Kang Jian, Song Peter X-K

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, U.S.A.

出版信息

Biometrics. 2014 Sep;70(3):661-70. doi: 10.1111/biom.12199. Epub 2014 Jun 19.

Abstract

Spatial-clustered data refer to high-dimensional correlated measurements collected from units or subjects that are spatially clustered. Such data arise frequently from studies in social and health sciences. We propose a unified modeling framework, termed as GeoCopula, to characterize both large-scale variation, and small-scale variation for various data types, including continuous data, binary data, and count data as special cases. To overcome challenges in the estimation and inference for the model parameters, we propose an efficient composite likelihood approach in that the estimation efficiency is resulted from a construction of over-identified joint composite estimating equations. Consequently, the statistical theory for the proposed estimation is developed by extending the classical theory of the generalized method of moments. A clear advantage of the proposed estimation method is the computation feasibility. We conduct several simulation studies to assess the performance of the proposed models and estimation methods for both Gaussian and binary spatial-clustered data. Results show a clear improvement on estimation efficiency over the conventional composite likelihood method. An illustrative data example is included to motivate and demonstrate the proposed method.

摘要

空间聚类数据是指从空间聚类的单元或个体中收集的高维相关测量值。这类数据在社会科学和健康科学研究中经常出现。我们提出了一个统一的建模框架,称为地理Copula,以刻画各种数据类型(包括连续数据、二元数据和计数数据等特殊情况)的大规模变异和小规模变异。为了克服模型参数估计和推断中的挑战,我们提出了一种有效的复合似然方法,其估计效率源于构建超识别联合复合估计方程。因此,通过扩展广义矩方法的经典理论,发展了所提出估计的统计理论。所提出估计方法的一个明显优点是计算可行性。我们进行了几项模拟研究,以评估所提出的模型和估计方法对高斯和二元空间聚类数据的性能。结果表明,与传统复合似然方法相比,估计效率有明显提高。还给出了一个说明性数据示例,以激发和演示所提出的方法。

相似文献

6
Efficient estimation for rank-based regression with clustered data.具有聚类数据的基于秩的回归的有效估计
Biometrics. 2012 Dec;68(4):1074-82. doi: 10.1111/j.1541-0420.2012.01760.x. Epub 2012 Mar 29.
9
10
A partially linear additive model for clustered proportion data.针对聚类比例数据的部分线性加性模型。
Stat Med. 2018 Mar 15;37(6):1009-1030. doi: 10.1002/sim.7573. Epub 2017 Dec 15.

引用本文的文献

1
MAXIMUM LIKELIHOOD ESTIMATION OF GAUSSIAN COPULA MODELS FOR GEOSTATISTICAL COUNT DATA.地统计计数数据的高斯Copula模型的最大似然估计
Commun Stat Simul Comput. 2020;49(8):1957-1981. doi: 10.1080/03610918.2018.1508705. Epub 2019 Jan 12.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验