Suppr超能文献

社区 2 型糖尿病老年人群衰弱预测模型的建立。

Development of a prediction model for frailty among older Chinese individuals with type 2 diabetes residing in the community.

机构信息

The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

Community Health Service Center of Zhengzhou City, Zhengzhou, China.

出版信息

Public Health Nurs. 2024 Nov-Dec;41(6):1271-1280. doi: 10.1111/phn.13377. Epub 2024 Aug 5.

Abstract

METHODS

The study employed a retrospective survey of 458 older individuals with T2D residing in a Chinese community, conducted between June 2020 and May 2021, to develop a predictive model for frailty. Among the participants, 83 individuals (18.1%) were diagnosed with frailty using modified frailty phenotypic criteria. The predictors of frailty in this community-dwelling older population with T2D were determined using least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression. These predictors were utilized to construct a nomogram. The discrimination, calibration, and medical usefulness of the prediction model were assessed through the C-index, calibration plot, and decision curve analysis (DCA), respectively. Additionally, internal validation of the prediction model was conducted using bootstrapping validation.

RESULTS

The developed nomogram for frailty prediction predominantly incorporated age, smoking status, regular exercise, depression, albumin (ALB) levels, sleep condition, HbA1c, and polypharmacy as significant predictors. Our prediction model demonstrated excellent discrimination and calibration, as evidenced by a C-index of 0.768 (95% CI, 0.714-0.822) and strong calibration. Internal validation yielded a C-index of 0.732, further confirming the reliability of the model. DCA indicated the utility of the nomogram in identifying frailty among the studied population.

CONCLUSION

The development of a predictive model enables a valuable estimation of frailty among community-dwelling older individuals with type 2 diabetes. This evidence-based tool provides crucial guidance to community healthcare professionals in implementing timely preventive measures to mitigate the occurrence of frailty in high-risk patients. By identifying established predictors of frailty, interventions and resources can be appropriately targeted, promoting better overall health outcomes and improved quality of life in this vulnerable population.

摘要

方法

本研究采用回顾性调查,对 2020 年 6 月至 2021 年 5 月居住在中国社区的 458 名 2 型糖尿病老年患者进行分析,旨在建立衰弱预测模型。其中,83 名患者(18.1%)根据修订的衰弱表型标准被诊断为衰弱。使用最小绝对收缩和选择算子(LASSO)回归和多变量逻辑回归确定该社区 2 型糖尿病老年人群的衰弱预测因子。利用这些预测因子构建了一个列线图。通过 C 指数、校准图和决策曲线分析(DCA)分别评估预测模型的判别能力、校准度和医疗实用性。此外,采用 bootstrap 验证法对预测模型进行内部验证。

结果

所建立的衰弱预测列线图主要纳入年龄、吸烟状况、规律运动、抑郁、白蛋白(ALB)水平、睡眠状况、HbA1c 和多药治疗等作为重要的预测因子。本研究的预测模型具有良好的判别能力和校准度,C 指数为 0.768(95%CI,0.714-0.822),校准度较强。内部验证的 C 指数为 0.732,进一步证实了模型的可靠性。DCA 表明该列线图在识别研究人群中的衰弱方面具有实用性。

结论

本研究开发的预测模型可用于评估社区居住的 2 型糖尿病老年患者的衰弱程度。该基于证据的工具为社区医疗保健专业人员提供了重要指导,以实施及时的预防措施,减少高危患者发生衰弱的风险。通过确定衰弱的既定预测因子,可以有针对性地进行干预和资源分配,改善这一脆弱人群的整体健康结局和生活质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验