Suppr超能文献

面向类脑应用的二维原子-分子异质结

2D Atomic-Molecular Heterojunctions toward Brainoid Applications.

作者信息

Shu Fan, Chen Weilin, Chen Yu, Liu Gang

机构信息

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

Macromol Rapid Commun. 2025 Apr;46(7):e2400529. doi: 10.1002/marc.202400529. Epub 2024 Aug 5.

Abstract

Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.

摘要

利用二维原子晶体及其异质结构进行类脑计算,通过模拟人类大脑在信息处理方面的卓越效率和最低能耗,为冯·诺依曼架构中固有的能源效率和处理速度限制提供了一个强大的解决方案。然而,类脑器件中使用的传统二维材料基异质结构存在局限性、性能均匀性、制造复杂性和弱界面粘附性等问题,这限制了它们的更广泛应用。通过用功能分子对二维材料进行共价功能化实现的新型二维原子 - 分子异质结(2DAMH)的引入,通过提供功能的稳定性和可调性,开创了类脑器件的新时代。本综述主要深入探讨了由聚合物材料与二维材料协同作用产生的二维原子 - 分子异质结的电子属性,强调了它们在忆阻器件中的最新应用进展,特别是它们在复制生物突触功能方面的潜力。尽管在修饰精度、生产可扩展性和基础理论完善方面仍存在挑战,但大量创新研究正在积极寻求解决方案。这些努力揭示了将二维原子 - 分子异质结纳入受脑启发的智能系统的巨大潜力,突出了实现更高效节能计算范式的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验