Mei Tingting, Chen Fandi, Huang Tianxu, Feng Zijian, Wan Tao, Han Zhaojun, Li Zhi, Hu Long, Lin Chun-Ho, Lu Yuerui, Cheng Wenlong, Qi Dong-Chen, Chu Dewei
School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane 4000, Australia.
ACS Nano. 2025 May 13;19(18):17140-17172. doi: 10.1021/acsnano.5c02397. Epub 2025 Apr 29.
With the increasing limitations of conventional computing techniques, particularly the von Neumann bottleneck, the brain's seamless integration of memory and processing through synapses offers a valuable model for technological innovation. Inspired by biological synapse facilitating adaptive, low-power computation by modulating signal transmission via ionic conduction, iontronic synaptic devices have emerged as one of the most promising candidates for neuromorphic computing. Meanwhile, the atomic-scale thickness and tunable electronic properties of van der Waals two-dimensional (2D) materials enable the possibility of designing highly integrated, energy-efficient devices that closely replicate synaptic plasticity. This review comprehensively analyzes advancements in iontronic synaptic devices based on 2D materials, focusing on electron-ion interactions in both iontronic transistors and memristors. The challenges of material stability, scalability, and device integration are evaluated, along with potential solutions and future research directions. By highlighting these developments, this review offers insights into the potential of 2D materials in advancing neuromorphic systems.
随着传统计算技术局限性的日益增加,尤其是冯·诺依曼瓶颈,大脑通过突触实现记忆与处理的无缝集成,为技术创新提供了一个有价值的模型。受生物突触通过离子传导调节信号传输来促进自适应、低功耗计算的启发,离子电子突触器件已成为神经形态计算最有前途的候选者之一。同时,范德华二维(2D)材料的原子级厚度和可调电子特性使得设计高度集成、节能的器件成为可能,这些器件能紧密复制突触可塑性。本综述全面分析了基于二维材料的离子电子突触器件的进展,重点关注离子电子晶体管和忆阻器中的电子-离子相互作用。评估了材料稳定性、可扩展性和器件集成方面的挑战,以及潜在的解决方案和未来的研究方向。通过突出这些进展,本综述深入探讨了二维材料在推进神经形态系统方面的潜力。