Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
Plant Cell Rep. 2024 Aug 5;43(8):208. doi: 10.1007/s00299-024-03294-9.
The application of deep learning methods, specifically the utilization of Large Language Models (LLMs), in the field of plant biology holds significant promise for generating novel knowledge on plant cell systems. The LLM framework exhibits exceptional potential, particularly with the development of Protein Language Models (PLMs), allowing for in-depth analyses of nucleic acid and protein sequences. This analytical capacity facilitates the discernment of intricate patterns and relationships within biological data, encompassing multi-scale information within DNA or protein sequences. The contribution of PLMs extends beyond mere sequence patterns and structure--function recognition; it also supports advancements in genetic improvements for agriculture. The integration of deep learning approaches into the domain of plant sciences offers opportunities for major breakthroughs in basic research across multi-scale plant traits. Consequently, the strategic application of deep learning methodologies, particularly leveraging the potential of LLMs, will undoubtedly play a pivotal role in advancing plant sciences, plant production, plant uses and propelling the trajectory toward sustainable agroecological and agro-food transitions.
深度学习方法,特别是大型语言模型(LLMs)在植物生物学领域的应用,为植物细胞系统的新知识生成带来了巨大的潜力。LLM 框架具有显著的潜力,特别是随着蛋白质语言模型(PLMs)的发展,能够深入分析核酸和蛋白质序列。这种分析能力有助于识别生物数据中的复杂模式和关系,包括 DNA 或蛋白质序列中的多尺度信息。PLMs 的贡献不仅在于识别序列模式和结构-功能,还支持农业遗传改良的进展。将深度学习方法整合到植物科学领域,为多尺度植物特性的基础研究带来了重大突破的机会。因此,战略性地应用深度学习方法,特别是利用 LLM 的潜力,无疑将在推动植物科学、植物生产、植物利用以及推动可持续农业生态和农业食品转型方面发挥关键作用。