Suppr超能文献

一种用于体内横向应变、固体应力和流体压力高质量估计的新型多孔弹性成像方法。

A Novel Poroelastography Method for High-Quality Estimation of Lateral Strain, Solid Stress, and Fluid Pressure In Vivo.

作者信息

Khan Md Hadiur Rahman, Righetti Raffaella

出版信息

IEEE Trans Med Imaging. 2025 Jan;44(1):232-243. doi: 10.1109/TMI.2024.3438564. Epub 2025 Jan 2.

Abstract

Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as "Poroelastography-based Ultrasound Lateral Strain Estimation" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.

摘要

使用超声弹性成像评估组织的力学和传输特性需要准确估计体积应变的时空分布。由于诸如间距限制和横向缺少相位信息等物理约束,横向应变估计的质量通常明显低于轴向应变估计的质量。在本文中,一种基于可压缩多孔介质物理原理的新型横向应变估计技术得以开发、测试和验证。该技术被称为“基于多孔弹性成像的超声横向应变估计”(PULSE)。PULSE与先前提出的横向应变估计器不同,因为它将组织局部区域内内部流体流动的基本物理原理作为理论基础。PULSE建立了轴向应变的时空变化与横向应变的相应时空变化之间的关系,从而有效地能够以与轴向应变估计器相当的质量评估横向应变。我们证明,PULSE还可用于使用超声多孔弹性成像(USPE)准确跟踪癌症中压缩诱导的固体应力和流体压力。在本研究中,我们报告了PULSE的理论公式以及使用有限元(FE)和超声模拟进行的验证。与真实模拟相比,PULSE生成的结果显示相对误差百分比(PRE)小于5%,结构相似性指数(SSIM)大于90%。还纳入了实验结果以定性评估PULSE在体内的性能。所提出的方法可用于克服非轴向应变成像的固有局限性,并提高USPE的临床可转化性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验