Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America.
Medicine, University of Rochester Medical Center, Rochester, New York, United States of America.
PLoS Comput Biol. 2024 Aug 5;20(8):e1012338. doi: 10.1371/journal.pcbi.1012338. eCollection 2024 Aug.
In many omics data, including microbiome sequencing data, we are only able to measure relative information. Various computational or statistical methods have been proposed to extract absolute (or biologically relevant) information from this relative information; however, these methods are under rather strong assumptions that may not be suitable for multigroup (more than two groups) and/or longitudinal outcome data. In this article, we first introduce the minimal assumption required to extract absolute from relative information. This assumption is less stringent than those imposed in existing methods, thus being applicable to multigroup and/or longitudinal outcome data. We then propose the first normalization method that works under this minimal assumption. The optimality and validity of the proposed method and its beneficial effects on downstream analysis are demonstrated in extensive simulation studies, where existing methods fail to produce consistent performance under the minimal assumption. We also demonstrate its application to real microbiome datasets to determine biologically relevant microbes to a specific disease/condition.
在许多组学数据中,包括微生物组测序数据,我们只能测量相对信息。已经提出了各种计算或统计方法来从这些相对信息中提取绝对(或生物学相关)信息;然而,这些方法有相当强的假设,可能不适合多组(超过两组)和/或纵向结果数据。在本文中,我们首先介绍了从相对信息中提取绝对信息所需的最小假设。这个假设比现有方法所要求的假设宽松,因此适用于多组和/或纵向结果数据。然后,我们提出了第一个在这个最小假设下工作的归一化方法。在广泛的模拟研究中,证明了所提出的方法的最优性和有效性,以及它对下游分析的有益影响,而现有方法在最小假设下无法产生一致的性能。我们还将其应用于真实的微生物组数据集,以确定与特定疾病/状况相关的生物学上相关的微生物。