Beijing Institute of Biotechnology, Beijing, China.
College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China.
PLoS Pathog. 2024 Aug 5;20(8):e1012291. doi: 10.1371/journal.ppat.1012291. eCollection 2024 Aug.
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
SARS-CoV-2 刺突蛋白(SARS-2-S)诱导未感染细胞的细胞-细胞融合可能发生在长 COVID-19 综合征中,因为循环 SARS-2-S 或含有 SARS-2-S 的细胞外囊泡(S-EVs)在 COVID-19 后的急性后遗症(PASC)中被发现持续存在长达 12 个月诊断后。虽然已经表明分离的重组 SARS-2-S 蛋白可以增加衰老 ACE2 表达细胞中的 SASP,但在没有病毒感染的情况下,SARS-2-S 合胞体与衰老的直接联系以及 SARS-2-S 合胞体在心脏功能障碍背景下对病理学的影响程度尚不清楚。在这里,我们发现 SARS-2-S 诱导的合胞体的衰老结局加剧了心力衰竭的进展。我们首先证明,通过 DNA 质粒或 LNP-mRNA 递送的表达 SARS-2-S 的细胞中的合胞体形成表现出衰老样表型。含有 SARS-2-S 的细胞外囊泡(S-EVs)也具有形成衰老合胞体的强大能力,而无需 SARS-2-S 的从头合成。然而,重要的是要注意,目前批准的 COVID-19 mRNA 疫苗不会诱导合胞体形成或细胞衰老。从机制上讲,SARS-2-S 合胞体引发功能性 MAVS 聚集体的形成,通过 TNFα 调节 SARS-2-S 合胞体的衰老命运。我们进一步证明衰老的 SARS-2-S 合胞体表现出收缩的形态,导致 WNK1 的激活和心脏代谢受损。在预先存在的心力衰竭小鼠中,WNK1 抑制剂 WNK463、抗合胞体药物尼氯硝唑和 senolytic 达沙替尼可防止 SARS-2-S 引发的心力衰竭恶化。我们的研究结果表明 COVID-19 介导的心脏病理学的潜在机制,并建议应用 WNK1 抑制剂进行治疗,特别是在 COVID-19 后急性后遗症的个体中。