Suppr超能文献

植物体内遗传漂变控制病毒对宿主抗性基因的适应。

Within-plant genetic drift to control virus adaptation to host resistance genes.

机构信息

INRAE, Pathologie Végétale, F-84140 Montfavet, France.

INRAE, Génétique et Amélioration des Fruits et Légumes, F-84143 Montfavet, France.

出版信息

PLoS Pathog. 2024 Aug 5;20(8):e1012424. doi: 10.1371/journal.ppat.1012424. eCollection 2024 Aug.

Abstract

Manipulating evolutionary forces imposed by hosts on pathogens like genetic drift and selection could avoid the emergence of virulent pathogens. For instance, increasing genetic drift could decrease the risk of pathogen adaptation through the random fixation of deleterious mutations or the elimination of favorable ones in the pathogen population. However, no experimental proof of this approach is available for a plant-pathogen system. We studied the impact of pepper (Capsicum annuum) lines carrying the same major resistance gene but contrasted genetic backgrounds on the evolution of Potato virus Y (PVY). The pepper lines were chosen for the contrasted levels of genetic drift (inversely related to Ne, the effective population size) they exert on PVY populations, as well as for their contrasted resistance efficiency (inversely related to the initial replicative fitness, Wi, of PVY in these lines). Experimental evolution was performed by serially passaging 64 PVY populations every month on six contrasted pepper lines during seven months. These PVY populations exhibited highly divergent evolutionary trajectories, ranging from viral extinctions to replicative fitness gains. The sequencing of the PVY VPg cistron, where adaptive mutations are likely to occur, allowed linking these replicative fitness gains to parallel adaptive nonsynonymous mutations. Evolutionary trajectories were well explained by the genetic drift imposed by the host. More specifically, Ne, Wi and their synergistic interaction played a major role in the fate of PVY populations. When Ne was low (i.e. strong genetic drift), the final PVY replicative fitness remained close to the initial replicative fitness, whereas when Ne was high (i.e. low genetic drift), the final PVY replicative fitness was high independently of the replicative fitness of the initially inoculated virus. We show that combining a high resistance efficiency (low Wi) and a strong genetic drift (low Ne) is the best solution to increase resistance durability, that is, to avoid virus adaptation on the long term.

摘要

操纵宿主对病原体施加的进化力量,如遗传漂变和选择,可以避免毒力病原体的出现。例如,增加遗传漂变可以降低病原体通过随机固定有害突变或消除病原体种群中有利突变来适应的风险。然而,对于植物-病原体系统,没有这种方法的实验证据。我们研究了携带相同主要抗性基因但遗传背景不同的辣椒(Capsicum annuum)品系对马铃薯 Y 病毒(PVY)进化的影响。选择这些辣椒品系是因为它们对 PVY 种群施加的遗传漂变水平(与有效种群大小 Ne 成反比)以及它们对病毒的抗性效率(与初始复制适应性 Wi 成反比)不同。在七个月的时间里,我们通过每月在六个对照辣椒品系上连续传代 64 个 PVY 种群来进行实验进化。这些 PVY 种群表现出高度发散的进化轨迹,从病毒灭绝到复制适应性增益。VPg 顺式元件的测序,其中可能发生适应性突变,使我们能够将这些复制适应性增益与平行的适应性非同义突变联系起来。进化轨迹很好地解释了宿主施加的遗传漂变。更具体地说,Ne、Wi 及其协同作用在 PVY 种群的命运中起主要作用。当 Ne 较低(即遗传漂变较强)时,最终的 PVY 复制适应性仍然接近初始复制适应性,而当 Ne 较高(即遗传漂变较弱)时,最终的 PVY 复制适应性与初始接种病毒的复制适应性无关而较高。我们表明,结合高抗性效率(低 Wi)和强遗传漂变(低 Ne)是提高抗性持久性的最佳解决方案,即避免病毒长期适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7da/11326801/f23ddd0e8697/ppat.1012424.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验