Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, 333, Taiwan.
Biosens Bioelectron. 2024 Nov 1;263:116630. doi: 10.1016/j.bios.2024.116630. Epub 2024 Aug 3.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is facilitated by its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme 2 (hACE2) receptor. This critical interaction facilitates viral entry and is a primary target for therapeutic intervention against COVID-19. However, it is difficult to fully optimize viral infection using existing protein-protein interaction methods. Herein, we introduce a nano-luciferase binary technology (NanoBiT)-based pseudoviral sensor designed to stimulate the dynamics of viral infection in both living cells and animals. Infection progression can be dynamically visualized via a rapid increase in luminescence within 3 h using an in vivo imaging system (IVIS). Inhibition of viral infection by baicalein and baicalin was evaluated using a NanoBiT-based pseudoviral sensor. These results indicate that the inhibitory efficacy of baicalein was strengthened by targeting the spike protein, whereas baicalin targeted the hACE2 protein. Additionally, under optimized conditions, baicalein and baicalin provided a synergistic combination to inhibit pseudoviral infection. Live bioluminescence imaging was used to evaluate the in vivo effects of baicalein and baicalin treatment on LgBiT-hACE2 mice infected with the BA.2-SmBiT spike pseudovirus. This innovative bioluminescent system functions as a sensitive and early-stage quantitative viral transduction in vitro and in vivo. This platform provides novel opportunities for studying the molecular biology of animal models.
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 的感染是由其三聚体表面刺突蛋白介导的,该蛋白与人类血管紧张素转换酶 2 (hACE2) 受体结合。这种关键的相互作用促进了病毒的进入,是针对 COVID-19 的治疗干预的主要靶点。然而,使用现有的蛋白质-蛋白质相互作用方法很难完全优化病毒感染。在此,我们引入了一种基于纳米萤光素酶二元技术(NanoBiT)的假病毒传感器,旨在刺激活细胞和动物中病毒感染的动力学。通过在体内成像系统(IVIS)中在 3 小时内快速增加发光,可以动态可视化感染进展。使用基于 NanoBiT 的假病毒传感器评估了黄芩素和黄芩苷对病毒感染的抑制作用。这些结果表明,黄芩素通过靶向刺突蛋白增强了抑制病毒感染的效果,而黄芩苷则靶向 hACE2 蛋白。此外,在优化条件下,黄芩素和黄芩苷提供了协同组合来抑制假病毒感染。活体生物发光成像用于评估黄芩素和黄芩苷处理对 BA.2-SmBiT 刺突假病毒感染的 LgBiT-hACE2 小鼠的体内效果。这种创新的生物发光系统在体外和体内作为一种敏感的早期定量病毒转导功能。该平台为研究动物模型的分子生物学提供了新的机会。