Department of Ultrasound, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China.
Department of Ultrasound, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer, Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
Br J Radiol. 2024 Oct 1;97(1162):1653-1660. doi: 10.1093/bjr/tqae136.
To determine whether adding elastography strain ratio (SR) and a deep learning based computer-aided diagnosis (CAD) system to breast ultrasound (US) can help reclassify Breast Imaging Reporting and Data System (BI-RADS) 3 and 4a-c categories and avoid unnecessary biopsies.
This prospective, multicentre study included 1049 masses (691 benign, 358 malignant) with assigned BI-RADS 3 and 4a-c between 2020 and 2022. CAD results was dichotomized possibly malignant vs. benign. All patients underwent SR and CAD examinations and histopathological findings were the standard of reference. Reduction of unnecessary biopsies (biopsies in benign lesions) and missed malignancies after reclassified (new BI-RADS 3) with SR and CAD were the outcome measures.
Following the routine conventional breast US assessment, 48.6% (336 of 691 masses) underwent unnecessary biopsies. After reclassifying BI-RADS 4a masses (SR cut-off <2.90, CAD dichotomized possibly benign), 25.62% (177 of 691 masses) underwent an unnecessary biopsies corresponding to a 50.14% (177 vs. 355) reduction of unnecessary biopsies. After reclassification, only 1.72% (9 of 523 masses) malignancies were missed in the new BI-RADS 3 group.
Adding SR and CAD to clinical practice may show an optimal performance in reclassifying BI-RADS 4a to 3 categories, and 50.14% masses would be benefit by keeping the rate of undetected malignancies with an acceptable value of 1.72%.
Leveraging the potential of SR in conjunction with CAD holds immense promise in substantially reducing the biopsy frequency associated with BI-RADS 3 and 4A lesions, thereby conferring substantial advantages upon patients encompassed within this cohort.
确定在乳腺超声(US)检查中加入弹性成像应变比(SR)和基于深度学习的计算机辅助诊断(CAD)系统是否有助于重新分类乳腺影像报告和数据系统(BI-RADS)3 类和 4a-c 类,并避免不必要的活检。
本前瞻性多中心研究纳入了 2020 年至 2022 年间诊断为 BI-RADS 3 和 4a-c 的 1049 个肿块(691 个良性,358 个恶性)。CAD 结果分为可能恶性与良性。所有患者均接受了 SR 和 CAD 检查,以组织病理学检查结果为金标准。SR 和 CAD 重新分类(新 BI-RADS 3)后,减少良性病变的不必要活检(良性病变活检)和遗漏新 BI-RADS 3 的恶性肿瘤为观察指标。
在进行常规乳腺 US 评估后,48.6%(336/691 个肿块)进行了不必要的活检。重新分类 BI-RADS 4a 类病变(SR 截断值<2.90,CAD 分为可能良性)后,25.62%(177/691 个肿块)进行了不必要的活检,相应地减少了 50.14%(177 比 355)不必要的活检。重新分类后,新 BI-RADS 3 组仅漏诊 1.72%(9/523 个肿块)的恶性肿瘤。
在临床实践中加入 SR 和 CAD 可能会在重新分类 BI-RADS 4a 为 3 类方面表现出最佳性能,并且 50.14%的肿块可以在保持可接受的 1.72%未检出恶性肿瘤率的情况下受益。
利用 SR 与 CAD 的结合的潜力,有望显著降低 BI-RADS 3 和 4A 病变相关的活检频率,从而为这一队列中的患者带来实质性的优势。