推进乳腺癌中Ki67热点检测:自动数字图像分析算法的比较分析
Advancing Ki67 hotspot detection in breast cancer: a comparative analysis of automated digital image analysis algorithms.
作者信息
Zwager Mieke C, Yu Shibo, Buikema Henk J, de Bock Geertruida H, Ramsing Thomas W, Thagaard Jeppe, Koopman Timco, van der Vegt Bert
机构信息
Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
出版信息
Histopathology. 2025 Jan;86(2):204-213. doi: 10.1111/his.15294. Epub 2024 Aug 5.
AIM
Manual detection and scoring of Ki67 hotspots is difficult and prone to variability, limiting its clinical utility. Automated hotspot detection and scoring by digital image analysis (DIA) could improve the assessment of the Ki67 hotspot proliferation index (PI). This study compared the clinical performance of Ki67 hotspot detection and scoring DIA algorithms based on virtual dual staining (VDS) and deep learning (DL) with manual Ki67 hotspot PI assessment.
METHODS
Tissue sections of 135 consecutive invasive breast carcinomas were immunohistochemically stained for Ki67. Two DIA algorithms, based on VDS and DL, automatically determined the Ki67 hotspot PI. For manual assessment; two independent observers detected hotspots and calculated scores using a validated scoring protocol.
RESULTS
Automated hotspot detection and assessment by VDS and DL could be performed in 73% and 100% of the cases, respectively. Automated hotspot detection by VDS and DL led to higher Ki67 hotspot PIs (mean 39.6% and 38.3%, respectively) compared to manual consensus Ki67 PIs (mean 28.8%). Comparing manual consensus Ki67 PIs with VDS Ki67 PIs revealed substantial correlation (r = 0.90), while manual consensus versus DL Ki67 PIs demonstrated high correlation (r = 0.95).
CONCLUSION
Automated Ki67 hotspot detection and analysis correlated strongly with manual Ki67 assessment and provided higher PIs compared to manual assessment. The DL-based algorithm outperformed the VDS-based algorithm in clinical applicability, because it did not depend on virtual alignment of slides and correlated stronger with manual scores. Use of a DL-based algorithm may allow clearer Ki67 PI cutoff values, thereby improving the clinical usability of Ki67.
目的
手动检测和评分Ki67热点既困难又容易出现变异性,限制了其临床应用。通过数字图像分析(DIA)进行自动热点检测和评分可以改善对Ki67热点增殖指数(PI)的评估。本研究比较了基于虚拟双重染色(VDS)和深度学习(DL)的Ki67热点检测和评分DIA算法与手动Ki67热点PI评估的临床性能。
方法
对135例连续浸润性乳腺癌的组织切片进行Ki67免疫组化染色。基于VDS和DL的两种DIA算法自动确定Ki67热点PI。对于手动评估,两名独立观察者检测热点并使用经过验证的评分方案计算分数。
结果
分别有73%和100%的病例可以通过VDS和DL进行自动热点检测和评估。与手动一致的Ki67 PI(平均28.8%)相比,VDS和DL自动热点检测导致更高的Ki67热点PI(分别为平均39.6%和38.3%)。将手动一致的Ki67 PI与VDS Ki67 PI进行比较显示出高度相关性(r = 0.90),而手动一致与DL Ki67 PI显示出高相关性(r = 0.95)。
结论
自动Ki67热点检测和分析与手动Ki67评估密切相关,并且与手动评估相比提供了更高的PI。基于DL的算法在临床适用性方面优于基于VDS的算法,因为它不依赖于玻片的虚拟对齐并且与手动评分的相关性更强。使用基于DL的算法可能允许更清晰的Ki67 PI临界值,从而提高Ki67的临床可用性。