Suppr超能文献

基于全组织切片虚拟双重染色的乳腺癌 Ki67 增殖指数的数字图像分析:临床验证和平台间一致性。

Digital image analysis of Ki67 proliferation index in breast cancer using virtual dual staining on whole tissue sections: clinical validation and inter-platform agreement.

机构信息

Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.

出版信息

Breast Cancer Res Treat. 2018 May;169(1):33-42. doi: 10.1007/s10549-018-4669-2. Epub 2018 Jan 18.

Abstract

PURPOSE

The Ki67 proliferation index is a prognostic and predictive marker in breast cancer. Manual scoring is prone to inter- and intra-observer variability. The aims of this study were to clinically validate digital image analysis (DIA) of Ki67 using virtual dual staining (VDS) on whole tissue sections and to assess inter-platform agreement between two independent DIA platforms.

METHODS

Serial whole tissue sections of 154 consecutive invasive breast carcinomas were stained for Ki67 and cytokeratin 8/18 with immunohistochemistry in a clinical setting. Ki67 proliferation index was determined using two independent DIA platforms, implementing VDS to identify tumor tissue. Manual Ki67 score was determined using a standardized manual counting protocol. Inter-observer agreement between manual and DIA scores and inter-platform agreement between both DIA platforms were determined and calculated using Spearman's correlation coefficients. Correlations and agreement were assessed with scatterplots and Bland-Altman plots.

RESULTS

Spearman's correlation coefficients were 0.94 (p < 0.001) for inter-observer agreement between manual counting and platform A, 0.93 (p < 0.001) between manual counting and platform B, and 0.96 (p < 0.001) for inter-platform agreement. Scatterplots and Bland-Altman plots revealed no skewness within specific data ranges. In the few cases with ≥ 10% difference between manual counting and DIA, results by both platforms were similar.

CONCLUSIONS

DIA using VDS is an accurate method to determine the Ki67 proliferation index in breast cancer, as an alternative to manual scoring of whole sections in clinical practice. Inter-platform agreement between two different DIA platforms was excellent, suggesting vendor-independent clinical implementability.

摘要

目的

Ki67 增殖指数是乳腺癌的一种预后和预测标志物。手动评分容易受到观察者内和观察者间的变异性影响。本研究的目的是临床验证使用虚拟双重染色(VDS)对整个组织切片进行数字图像分析(DIA)Ki67,并评估两个独立 DIA 平台之间的平台间一致性。

方法

在临床环境中,对 154 例连续浸润性乳腺癌的连续全组织切片进行 Ki67 和细胞角蛋白 8/18 的免疫组织化学染色。使用两种独立的 DIA 平台来确定 Ki67 增殖指数,实施 VDS 来识别肿瘤组织。手动 Ki67 评分采用标准化手动计数方案确定。手动和 DIA 评分之间的观察者间一致性以及两个 DIA 平台之间的平台间一致性通过 Spearman 相关系数来确定和计算。通过散点图和 Bland-Altman 图评估相关性和一致性。

结果

手动计数与平台 A 之间的观察者间一致性的 Spearman 相关系数为 0.94(p<0.001),手动计数与平台 B 之间的观察者间一致性为 0.93(p<0.001),平台间一致性为 0.96(p<0.001)。散点图和 Bland-Altman 图显示在特定数据范围内没有偏度。在手动计数与 DIA 之间存在≥10%差异的少数情况下,两个平台的结果相似。

结论

使用 VDS 的 DIA 是一种准确的方法,可用于确定乳腺癌中的 Ki67 增殖指数,作为临床实践中对整个切片进行手动评分的替代方法。两个不同 DIA 平台之间的平台间一致性非常好,表明具有供应商独立性的临床可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ba8/5882622/f1efdd26ae35/10549_2018_4669_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验