Suppr超能文献

增强的糖酵解导致细胞外酸化,并在低氧性肺动脉高压中激活酸敏感离子通道 1a。

Enhanced glycolysis causes extracellular acidification and activates acid-sensing ion channel 1a in hypoxic pulmonary hypertension.

机构信息

Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2024 Oct 1;327(4):L439-L451. doi: 10.1152/ajplung.00083.2024. Epub 2024 Aug 6.

Abstract

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H transport/secretion through carbonic anhydrases, Na/H exchanger 1, or vacuolar-type H-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca entry in PASMCs from CH rats. These data suggest that multiple H transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN. In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.

摘要

在肺动脉高压(PHTN)中,代谢向有氧糖酵解的转变促进了肺动脉平滑肌细胞(PASMC)的过度增殖和抗凋亡表型。增强的糖酵解会诱导细胞外酸中毒,从而激活质子感应膜受体和离子通道。我们之前的研究报告表明,质子门控阳离子通道酸感应离子通道 1a(ASIC1a)的激活有助于缺氧性 PHTN 的发展。因此,我们假设增强的糖酵解和随后的 PASMC 细胞外微环境酸化会在缺氧性 PHTN 中激活 ASIC1a。我们观察到,慢性低氧(CH)诱导的 PHTN 大鼠的 PASMC 耗氧率降低,细胞外酸化率增加,表明向有氧糖酵解转变。此外,我们发现 CH 和体外缺氧后 PASMC 中会发生细胞内碱化和细胞外酸化,用 2-脱氧-D-葡萄糖(2-DG)抑制糖酵解可以防止这种 pH 变化。通过抑制碳酸酐酶、Na/H 交换器 1 或液泡型 H-ATP 酶的 H 转运/分泌并不能防止缺氧后这种 pH 变化。虽然假定的单羧酸转运蛋白 1(MCT1)和 -4(MCT4)抑制剂 syrosingopine 可以防止 pH 变化,但特异性 MCT1 抑制剂 AZD3965 和/或 MCT4 抑制剂 VB124 没有效果,表明 syrosingopine 靶向糖酵解途径而不依赖于 H 输出。此外,2-DG 和 syrosingopine 可防止 CH 大鼠 PASMC 中增强的 ASIC1a 介导的储存操纵 Ca 内流。这些数据表明,多种 H 转运机制导致细胞外酸中毒,而抑制糖酵解——而不是特定的 H 转运体——更有效地防止细胞外酸化和 ASIC1a 激活。综上所述,这些数据揭示了缺氧性 PHTN 中糖酵解与 ASIC1a 激活之间的新病理关系。在肺动脉高压中,代谢向有氧糖酵解的转变导致肺动脉平滑肌细胞的过度增殖和抗凋亡表型。我们证明,这种增强的糖酵解会诱导细胞外酸中毒并激活质子门控离子通道酸感应离子通道 1a(ASIC1a)。尽管 PHTN 中上调了多种 H 转运/分泌机制,可能导致细胞外酸中毒,但用 2-脱氧-D-葡萄糖或 syrosingopine 抑制糖酵解可有效防止细胞外酸化和 ASIC1a 激活,这揭示了一种有前途的治疗途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验