Suppr超能文献

来自乳腺癌患者血浆的细胞外囊泡微小RNA作为疾病复发的潜在预后生物标志物。

EV-miRNAs from breast cancer patients of plasma as potential prognostic biomarkers of disease recurrence.

作者信息

Causin Rhafaela Lima, Polezi Mariana Regatieri, Freitas Ana Julia Aguiar de, Calfa Stéphanie, Altei Wanessa Fernanda, Dias Júlia Oliveira, Laus Ana Carolina, Pessôa-Pereira Danielle, Komoto Tatiana Takahasi, Evangelista Adriane Feijó, Souza Cristiano de Pádua, Reis Rui Manuel, Marques Marcia Maria Chiquitelli

机构信息

Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.

Radiation Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil.

出版信息

Heliyon. 2024 Jul 10;10(14):e33933. doi: 10.1016/j.heliyon.2024.e33933. eCollection 2024 Jul 30.

Abstract

BACKGROUND

Extracellular vesicles (EVs), ubiquitously released by blood cells, facilitate intercellular communication. In cancer, tumor-derived EVs profoundly affect the microenvironment, promoting tumor progression and raising the risk of recurrence. These EVs contain miRNAs (EV-miRNAs), promising cancer biomarkers. Characterizing plasma EVs and identifying EV-miRNAs associated with breast cancer recurrence are crucial aspects of cancer research since they allow us to discover new biomarkers that are effective for understanding tumor biology and for being used for early detection, disease monitoring, or approaches to personalized medicine. This study aimed to characterize plasma EVs in breast cancer (BC) patients and identify EV-miRNAs associated with BC recurrence.

METHODS

This retrospective observational study included 24 BC patients divided into recurrence (n= 11) and non-recurrence (n= 13) groups. Plasma EVs were isolated and characterized. Total RNA from EVs was analyzed for miRNA expression using NanoString's nCounter® miRNA Expression Assays panel. MicroRNA target prediction used mirDIP, and pathway interactions were assessed via Reactome.

RESULTS

A stronger presence of circulating EVs was found to be linked with a less favorable prognosis (p = 0.0062). We discovered a distinct signature of EV-miRNAs, notably including miR-19a-3p and miR-130b-3p, which are significantly associated with breast cancer recurrence. Furthermore, miR-19a-3p and miR-130b-3p were implicated in the regulation of PTEN and MDM4, potentially contributing to breast cancer progression.A notable association emerged, indicating a high concentration of circulating EVs predicts poor prognosis (p = 0.0062). Our study found a distinct EV-miRNA signature involving miR-19a-3p and miR-130b-3p, strongly associated with disease recurrence. We also presented compelling evidence for their regulatory roles in PTEN and MDM4 genes, contributing to BC development.

CONCLUSION

This study revealed that increased plasma EV concentration is associated with BC recurrence. The prognostic significance of EVs is closely tied to the unique expression profiles of miR-19a-3p and miR-130b-3p. These findings underscore the potential of EV-associated miRNAs as valuable indicators for BC recurrence, opening new avenues for diagnosis and treatment exploration.

摘要

背景

血细胞普遍释放的细胞外囊泡(EVs)促进细胞间通讯。在癌症中,肿瘤来源的EVs深刻影响微环境,促进肿瘤进展并增加复发风险。这些EVs含有微小RNA(EV-miRNAs),是很有前景的癌症生物标志物。表征血浆EVs并鉴定与乳腺癌复发相关的EV-miRNAs是癌症研究的关键方面,因为它们使我们能够发现对理解肿瘤生物学以及用于早期检测、疾病监测或个性化医疗方法有效的新生物标志物。本研究旨在表征乳腺癌(BC)患者的血浆EVs并鉴定与BC复发相关的EV-miRNAs。

方法

这项回顾性观察研究纳入了24例BC患者,分为复发组(n = 11)和非复发组(n = 13)。分离并表征血浆EVs。使用NanoString公司的nCounter® miRNA表达分析面板分析EVs中的总RNA以检测miRNA表达。使用mirDIP进行微小RNA靶标预测,并通过Reactome评估通路相互作用。

结果

发现循环EVs的存在更强与预后较差相关(p = 0.0062)。我们发现了一种独特的EV-miRNAs特征,特别是包括miR-19a-3p和miR-130b-3p,它们与乳腺癌复发显著相关。此外,miR-19a-3p和miR-130b-3p参与了PTEN和MDM4的调控,可能促进乳腺癌进展。出现了一个显著的关联,表明循环EVs浓度高预示预后不良(p = 0.0062)。我们的研究发现了一种独特的EV-miRNA特征,涉及miR-19a-3p和miR-130b-3p,与疾病复发密切相关。我们还提供了令人信服的证据证明它们在PTEN和MDM4基因中的调控作用,促进了BC的发展。

结论

本研究表明血浆EV浓度升高与BC复发相关。EVs的预后意义与miR-19a-3p和miR-130b-3p的独特表达谱密切相关。这些发现强调了EV相关miRNAs作为BC复发有价值指标的潜力,为诊断和治疗探索开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51b0/11298852/da023a7ceee8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验