Suppr超能文献

基于稻壳灰制备二氧化硅/海藻酸钙纳米复合材料用于高效吸附水中苯酚

Fabrication of silica/calcium alginate nanocomposite based on rice husk ash for efficient adsorption of phenol from water.

作者信息

Khoj Manal A

机构信息

Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia

出版信息

RSC Adv. 2024 Aug 5;14(33):24322-24334. doi: 10.1039/d4ra04070h. eCollection 2024 Jul 26.

Abstract

The current work discusses the synthesis of three different solid adsorbents: silica nanoparticles derived from rice husk (RS), calcium alginate beads (AG), and silica/alginate nanocomposite (RSG). The fabricated solid adsorbents were characterized by using different physicochemical techniques such as TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pH, SEM, and TEM. The adsorption efficiencies of the prepared solid adsorbents were considered for the removal of phenol as a selected hazardous pollutant. Because of its improved adsorption capacity and environmentally friendly character, a composite made of biosilica nanoparticles and naturally occurring alginate biopolymer by click chemistry is significant in environmental treatment. Adding silica nanoparticles to the alginate biopolymer hydrogel has many advantages, including increased surface area, easier recovery of the solid adsorbent, and additional surface chemical functional groups. The silica/alginate nanocomposite showed surface heterogeneity with many chemical functional groups present, whereas silica nanoparticles had the highest surface area (893.1 m g). It has been found that the average TEM particle size of RS, AG, and RSG was between 18 and 82 nm. RSG displayed the maximum adsorption capacity of phenol (100.55 mg g) at pH 7 and 120 min as equilibrium adsorption time. Adsorption of phenol onto the solid adsorbents fit well with a nonlinear Langmuir isotherm with favorable adsorption. Kinetic and thermodynamic studies prove that the adsorption process follows a pseudo-second-order kinetic model, endothermic process, physical, and spontaneous adsorption. Sodium hydroxide is effective in desorbing 94% of the loaded phenols, according to desorption investigations. Solid reusability tests showed that, after seven cycles of phenol adsorption/desorption, RSG lost only 8.8% of its adsorption activity.

摘要

当前的工作讨论了三种不同固体吸附剂的合成

源自稻壳的二氧化硅纳米颗粒(RS)、海藻酸钙珠(AG)以及二氧化硅/海藻酸钠纳米复合材料(RSG)。通过使用不同的物理化学技术对制备的固体吸附剂进行表征,如热重分析(TGA)、X射线衍射(XRD)、氮气吸附/脱附分析、衰减全反射傅里叶变换红外光谱(ATR-FTIR)、pH值、扫描电子显微镜(SEM)和透射电子显微镜(TEM)。将制备的固体吸附剂用于去除作为选定有害污染物的苯酚,并考察其吸附效率。由于其提高的吸附能力和环境友好特性,通过点击化学由生物二氧化硅纳米颗粒和天然存在的海藻酸盐生物聚合物制成的复合材料在环境处理中具有重要意义。向海藻酸盐生物聚合物水凝胶中添加二氧化硅纳米颗粒有许多优点,包括增加表面积、更容易回收固体吸附剂以及额外的表面化学官能团。二氧化硅/海藻酸钠纳米复合材料表现出表面不均匀性,存在许多化学官能团,而二氧化硅纳米颗粒具有最高的表面积(893.1 m²/g)。已发现RS、AG和RSG的平均TEM粒径在18至82纳米之间。RSG在pH值为7且平衡吸附时间为120分钟时表现出对苯酚的最大吸附容量(100.55 mg/g)。苯酚在固体吸附剂上的吸附很好地符合具有良好吸附的非线性朗缪尔等温线。动力学和热力学研究证明吸附过程遵循准二级动力学模型,是吸热过程、物理吸附和自发吸附。根据脱附研究,氢氧化钠能有效解吸94%负载的苯酚。固体可重复使用性测试表明,经过七个苯酚吸附/脱附循环后,RSG仅损失了8.8%的吸附活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/177e/11298972/dba25d8826f4/d4ra04070h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验