Budiantara I Nyoman, Candra Krishna Purnawan, Putri Marisa
Study Program of Statistics, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda 75119 Indonesia.
Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111 Indonesia.
MethodsX. 2024 Jul 6;13:102802. doi: 10.1016/j.mex.2024.102802. eCollection 2024 Dec.
This study proposes the development of a nonparametric regression model combined with geographically weighted regression. The regression model considers geographical factors and has a data pattern that does not follow a parametric form to overcome the problem of spatial heterogeneity and unknown regression functions. This study aims to model provincial food security index data in Indonesia with the GWSNR model, so finding the optimal knot point and the best geographic weighting is necessary. We propose the selection of optimal knot points using the Cross Validation (CV) and Generalized Cross Validation (GCV) methods. The optimal knot point will control the accuracy of the regression curve as we also consider the MSE value in showing the ability of the model. In addition, we determine the best geographic weighting and test the significance of the model parameters. We demonstrate the GWSNR model on food security index data. The best GWSNR model uses the Gaussian kernel weighting function and selects the optimal knot point as one-knot point based on the lowest CV and GCV values. Simultaneous and partial parameter test results show that there are 10 area classifications with different effects on each group of classification results. Some of the highlights of the proposed approach are:•The method is the development of a nonparametric regression model with geographic weighting, which combines nonparametric and spatial regression in modeling the national food security index.•There are three-knot points tested in nonparametric truncated spline regression and three geographic weightings in spatial regression. Then the optimal knot point and best bandwidth are determined using Cross Validation and Generalized Cross Validation.•This article will determine regional groupings in Indonesia in 2022 based on significant predictors in modeling the national food security index numbers.
本研究提出开发一种结合地理加权回归的非参数回归模型。该回归模型考虑了地理因素,具有不遵循参数形式的数据模式,以克服空间异质性和未知回归函数的问题。本研究旨在使用GWSNR模型对印度尼西亚的省级粮食安全指数数据进行建模,因此找到最优节点和最佳地理权重是必要的。我们建议使用交叉验证(CV)和广义交叉验证(GCV)方法来选择最优节点。最优节点将控制回归曲线的准确性,因为我们在展示模型能力时也考虑了MSE值。此外,我们确定最佳地理权重并检验模型参数的显著性。我们在粮食安全指数数据上演示了GWSNR模型。最佳的GWSNR模型使用高斯核权重函数,并根据最低的CV和GCV值选择最优节点为单节点。同时和部分参数检验结果表明,有10个区域分类对每组分类结果有不同影响。所提出方法的一些亮点包括:
•该方法是一种具有地理加权的非参数回归模型的发展,它在对国家粮食安全指数进行建模时结合了非参数和空间回归。
•在非参数截断样条回归中测试了三个节点,在空间回归中测试了三个地理权重。然后使用交叉验证和广义交叉验证确定最优节点和最佳带宽。
•本文将根据对国家粮食安全指数数字进行建模时的显著预测变量,确定2022年印度尼西亚的区域分组。