Fathurahman M, Sari Nariza Wanti Wulan, Fauziyah Meirinda, Dani Andrea Tri Rian, Jannah Raudhatul, Dwi Juriani S, Kusuma Ratna
Study Program of Statistics, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia.
Study Program of Mathematics, Department of Mathematics, Faculty of Mathematics and Natural Sciences, Mulawarman University, Samarinda, Indonesia.
MethodsX. 2024 Dec 13;14:103098. doi: 10.1016/j.mex.2024.103098. eCollection 2025 Jun.
This research introduces a new model called Geographically Temporally and Weighted Spline Nonparametric Regression (GTWSNR), which is an extension of the Geographically Temporally Weighted Regression (GTWR) model. The GTWSNR model combines nonparametric spline regression with spatial and temporal weighting, integrating geographic information and time series on an unknown regression curve. This model provides insights into spatial influences over multiple time series observations and produces forecasting results based on the analyzed spatial data. GTWSNR is designed to address the limitations of the traditional GTWR model in handling unknown regression functions. The research aims to develop the GTWSNR model to overcome these challenges and uses the Maximum Likelihood Estimator (MLE) to estimate the model. Key contributions of this study include:•The development of the GTWSNR model as a spatiotemporal approach to address unknown regression functions using a truncated spline estimator in nonparametric regression.•The application of a weighted Maximum Likelihood Estimator (MLE) method for estimating the GTWSNR model.•The implementation of the GTWSNR model on rice productivity data from 34 provinces in Indonesia to demonstrate its effectiveness as the best model.
本研究引入了一种名为地理时间加权样条非参数回归(GTWSNR)的新模型,它是地理时间加权回归(GTWR)模型的扩展。GTWSNR模型将非参数样条回归与空间和时间加权相结合,在未知回归曲线上整合了地理信息和时间序列。该模型深入分析了对多个时间序列观测值的空间影响,并基于所分析的空间数据得出预测结果。GTWSNR旨在解决传统GTWR模型在处理未知回归函数方面的局限性。该研究旨在开发GTWSNR模型以克服这些挑战,并使用最大似然估计器(MLE)来估计该模型。本研究的主要贡献包括:
将GTWSNR模型开发为一种时空方法,在非参数回归中使用截断样条估计器来处理未知回归函数。
应用加权最大似然估计器(MLE)方法来估计GTWSNR模型。
在印度尼西亚34个省份的水稻生产力数据上实施GTWSNR模型,以证明其作为最佳模型的有效性。