Jiang Yanrong, Cao Wenjin, Hu Zhubin, Yue Zhongyao, Bai Chunyuan, Li Ruxin, Liu Zhi, Wang Xue-Bin, Peng Peng
Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China.
Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA.
J Chem Phys. 2024 Aug 7;161(5). doi: 10.1063/5.0218918.
Conducting a comprehensive molecular-level evaluation of a photoacid generator (PAG) and its subsequent impact on lithography performance can facilitate the rational design of a promising 193 nm photoresist tailored to specific requirements. In this study, we integrated spectroscopy and computational techniques to meticulously investigate the pivotal factors of three prototypical PAG anions, p-toluenesulfonate (pTS-), 2-(trifluoromethyl)benzene-1-sulfonate (TFMBS-), and triflate (TF-), in the lithography process. Our findings reveal a significant redshift in the absorption spectra caused by specific PAG anions, attributed to their involvement in electronic transition processes, thereby enhancing the transparency of the standard PAG cation, triphenylsulfonium (TPS+), particularly at ∼193 nm. Furthermore, the electronic stability of PAG anions can be enhanced by solvent effects with varying degrees of strength. We observed the lowest vertical detachment energy of 6.6 eV of pTS- in PGMEA solution based on the polarizable continuum model, which prevents anion loss at 193 nm lithography. In addition, our findings indicate gas-phase proton affinity values of 316.4 kcal/mol for pTS-, 308.1 kcal/mol for TFMBS-, and 303.2 kcal/mol for TF-, which suggest the increasing acidity strength, yet even the weakest acid pTS- is still stronger than strong acid HBr. The photolysis of TPS+-based PAG, TPS+·pTS-, generated an excited state leading to homolysis bond cleavage with the lowest reaction energy of 83 kcal/mol. Overall, the PAG anion pTS- displayed moderate acidity, possessed the lowest photolysis reaction energy, and demonstrated an appropriate redshift. These properties collectively render it a promising candidate for an effective acid producer.
对光产酸剂(PAG)进行全面的分子水平评估及其对光刻性能的后续影响,有助于合理设计出满足特定要求的有前景的193纳米光刻胶。在本研究中,我们整合光谱学和计算技术,精心研究了光刻过程中三种典型PAG阴离子(对甲苯磺酸根(pTS-)、2-(三氟甲基)苯磺酸根(TFMBS-)和三氟甲磺酸根(TF-))的关键因素。我们的研究结果表明,特定PAG阴离子会导致吸收光谱发生显著红移,这归因于它们参与了电子跃迁过程,从而提高了标准PAG阳离子三苯基锍(TPS+)的透明度,尤其是在约193纳米处。此外,PAG阴离子的电子稳定性可通过不同强度的溶剂效应得到增强。基于极化连续介质模型,我们观察到在PGMEA溶液中pTS-的最低垂直脱附能为6.6电子伏特,这可防止其在193纳米光刻时损失。此外,我们的研究结果表明,pTS-的气相质子亲和能值为316.4千卡/摩尔,TFMBS-为308.1千卡/摩尔,TF-为303.2千卡/摩尔,这表明酸性强度在增加,但即使是最弱的酸pTS-仍比强酸HBr强。基于TPS+的PAG(TPS+·pTS-)的光解产生了一个激发态,导致均裂键断裂,最低反应能为83千卡/摩尔。总体而言,PAG阴离子pTS-表现出适度的酸性,具有最低的光解反应能,并呈现出适当的红移。这些特性共同使其成为一种有前景的有效产酸剂候选物。