Suppr超能文献

用于下一代微电子的二维材料的原子级精密加工。

Atomic Precision Processing of Two-Dimensional Materials for Next-Generation Microelectronics.

作者信息

Yoo Jinkyoung, Nam Chang-Yong, Bussmann Ezra

机构信息

Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

Center for Functional Materials, Brookhaven National Laboratory, Upton, New York 11973, United States.

出版信息

ACS Nano. 2024 Aug 20;18(33):21614-21622. doi: 10.1021/acsnano.4c04908. Epub 2024 Aug 6.

Abstract

The growth of the information era economy is driving the pursuit of advanced materials for microelectronics, spurred by exploration into "Beyond CMOS" and "More than Moore" paradigms. Atomically thin 2D materials, such as transition metal dichalcogenides (TMDCs), show great potential for next-generation microelectronics due to their properties and defect engineering capabilities. This perspective delves into atomic precision processing (APP) techniques like atomic layer deposition (ALD), epitaxy, atomic layer etching (ALE), and atomic precision advanced manufacturing (APAM) for the fabrication and modification of 2D materials, essential for future semiconductor devices. Additive APP methods like ALD and epitaxy provide precise control over composition, crystallinity, and thickness at the atomic scale, facilitating high-performance device integration. Subtractive APP techniques, such as ALE, focus on atomic-scale etching control for 2D material functionality and manufacturing. In APAM, modification techniques aim at atomic-scale defect control, offering tailored device functions and improved performance. Achieving optimal performance and energy efficiency in 2D material-based microelectronics requires a comprehensive approach encompassing fundamental understanding, process modeling, and high-throughput metrology. The outlook for APP in 2D materials is promising, with ongoing developments poised to impact manufacturing and fundamental materials science. Integration with advanced metrology and codesign frameworks will accelerate the realization of next-generation microelectronics enabled by 2D materials.

摘要

信息时代经济的发展推动了对用于微电子的先进材料的追求,这是由对“超越互补金属氧化物半导体(Beyond CMOS)”和“超越摩尔定律(More than Moore)”范式的探索所激发的。原子级超薄的二维材料,如过渡金属二硫属化物(TMDCs),由于其特性和缺陷工程能力,在下一代微电子领域显示出巨大潜力。本文深入探讨了原子精确加工(APP)技术,如原子层沉积(ALD)、外延、原子层蚀刻(ALE)和原子精确先进制造(APAM),这些技术对于二维材料的制造和改性至关重要,而二维材料是未来半导体器件所必需的。像ALD和外延这样的加法APP方法在原子尺度上提供了对成分、结晶度和厚度的精确控制,有助于实现高性能器件集成。减法APP技术,如ALE,专注于对二维材料功能和制造的原子尺度蚀刻控制。在APAM中,改性技术旨在实现原子尺度的缺陷控制,提供定制的器件功能并提高性能。要在基于二维材料的微电子中实现最佳性能和能源效率,需要一种综合方法,包括基本理解、工艺建模和高通量计量。二维材料中APP的前景广阔,持续的发展有望影响制造和基础材料科学。与先进计量和协同设计框架的集成将加速由二维材料实现的下一代微电子的实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验