Suppr超能文献

热原子层蚀刻的机制

Mechanisms of Thermal Atomic Layer Etching.

作者信息

George Steven M

机构信息

Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States.

出版信息

Acc Chem Res. 2020 Jun 16;53(6):1151-1160. doi: 10.1021/acs.accounts.0c00084. Epub 2020 Jun 1.

Abstract

ConspectusAtomic layer control of semiconductor processing is needed as critical dimensions are progressively reduced below the 10 nm scale. Atomic layer deposition (ALD) methods are meeting this challenge and produce conformal thin film growth on high aspect ratio features. Atomic layer etching (ALE) techniques are also required that can remove material with atomic layer precision. ALE processes are defined using sequential, self-limiting reactions based on surface modification and volatile release. Plasma ALE methods employ energetic ion or neutral species to release the modified material anisotropically using sputtering. In contrast, thermal ALE processes utilize gas species to release the modified material isotropically using thermal reactions. Thermal ALE can be viewed as the "reverse of ALD".There are a number of mechanisms for thermal ALE that have developed over the last five years. This Account will first examine the fluorination and ligand-exchange mechanism for thermal ALE. This mechanism is applicable for many metal oxide and metal nitride materials. Subsequently, the "conversion etch" mechanisms will be explored that are derived from the conversion of the surface of the substrate to a new material. The "conversion etch" mechanisms are needed when the initial material does not have a viable etching pathway via fluorination and ligand-exchange or when the material has a volatile fluoride. The thermal ALE mechanisms founded on either oxidation or halogenation of the initial substrate will then be examined with an emphasis on metal thermal ALE. Lastly, thermal ALE mechanisms will be considered that are based on self-limiting surface ligands or temperature modulation mechanisms. These various mechanisms offer a wide range of pathways to remove material isotropically with atomic layer control.Thermal ALE will be required to fabricate advanced semiconductor devices. This fabrication will increasingly occur beyond the limits of lithography and will extend into the third dimension. The situation is like Manhattan during the advent of skyscrapers. When there was no more room on the ground, building started to move to the third dimension. Three-dimensional devices require a sequential series of deposition and etching steps to build the skyscraper structures. Some etching needs to be vertical and anisotropic to make the elevator shafts. Other etching needs to be horizontal and isotropic to form the hallways. The mechanisms of thermal ALE will be critical for the definition of isotropic ALE processes.Reaching beyond the limits of lithography will also increase the need for maskless processing. The mechanisms of thermal ALE lead to strategies for selective etching of one material in the presence of many materials. In addition, area-selective deposition can benefit from the ability of thermal ALE to enhance deposition on the desired growth surfaces by removing deposition from other surrounding surfaces. Looking ahead, thermal ALE will continue to provide unique capabilities and will grow in importance as a nanofabrication processing technique.

摘要

概述

随着关键尺寸逐渐缩小至10纳米以下,半导体加工中的原子层控制变得至关重要。原子层沉积(ALD)方法正应对这一挑战,并能在高深宽比特征上实现保形薄膜生长。同时也需要原子层蚀刻(ALE)技术,能够以原子层精度去除材料。ALE工艺是基于表面改性和挥发性物质释放的顺序性、自限性反应来定义的。等离子体ALE方法利用高能离子或中性粒子,通过溅射各向异性地释放改性材料。相比之下,热ALE工艺利用气体物质通过热反应各向同性地释放改性材料。热ALE可被视为“ALD的逆过程”。

在过去五年中,已发展出多种热ALE机制。本综述将首先探讨热ALE的氟化和配体交换机制。该机制适用于许多金属氧化物和金属氮化物材料。随后,将探索由衬底表面转化为新材料衍生而来的“转化蚀刻”机制。当初始材料无法通过氟化和配体交换形成可行的蚀刻路径,或者该材料具有挥发性氟化物时,就需要“转化蚀刻”机制。接下来将研究基于初始衬底氧化或卤化的热ALE机制,重点是金属热ALE。最后,将考虑基于自限性表面配体或温度调制机制的热ALE机制。这些不同的机制提供了多种途径,能够以原子层控制各向同性地去除材料。

制造先进半导体器件将需要热ALE。这种制造将越来越多地超出光刻的极限,并延伸到三维空间。这种情况类似于摩天大楼出现时的曼哈顿。当地面上没有更多空间时,建筑开始向三维空间发展。三维器件需要一系列连续的沉积和蚀刻步骤来构建摩天大楼结构。一些蚀刻需要垂直且各向异性,以制造电梯井。其他蚀刻需要水平且各向同性,以形成走廊。热ALE的机制对于定义各向同性ALE工艺至关重要。

超越光刻极限也将增加对无掩模加工的需求。热ALE的机制导致了在多种材料存在下选择性蚀刻一种材料的策略。此外,区域选择性沉积可以受益于热ALE通过去除其他周围表面的沉积来增强所需生长表面上沉积的能力。展望未来,热ALE将继续提供独特的能力,并作为一种纳米制造加工技术变得越来越重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验