Fu Xiaowei, Li Qichang, Li Hongdong, Xiao Weiping, Xiao Zhenyu, Xu Guangrui, Chen Dehong, Wu Zexing, Wang Lei
Key Laboratory of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-Chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042 Qingdao, P. R. China.
College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.
Inorg Chem. 2024 Aug 19;63(33):15477-15484. doi: 10.1021/acs.inorgchem.4c02623. Epub 2024 Aug 6.
Transition-metal phosphides (TMPs) have attracted extensive attention in energy-related fields, especially for electrocatalytic hydrogen evolution reaction (HER). However, it is imperative to develop a facile and time-consuming approach to prepare metal phosphides with satisfactory catalytic performance. Herein, nitrogen-doped CoP-CoP decorated with Ru (Ru/N-CoP-CoP) is synthesized (Ru/N-CoP-CoP) through a hydrothermal route and following an ultrafast and simple microwave avenue within 20 s. The achieved Ru/N-CoP-CoP possesses an interconnected porous morphology to expose abundant active sites and accelerate the mass transport. Moreover, N doping and Ru-supported decorated Ru/N-CoP-CoP also play a key role in promoting the electrocatalytic activity. Therefore, the as-designed Ru/N-CoP-CoP presents good catalytic performance for the HER in a wide pH range. Ru/N-CoP-CoP merely needs overpotentials of 63, 100, and 65 mV to obtain 10 mA cm in acidic, alkaline, and seawater electrolytes. This research provides a novel and efficient strategy for the synthesis of TMPs with highly efficient catalytic activity.
过渡金属磷化物(TMPs)在能源相关领域引起了广泛关注,特别是在电催化析氢反应(HER)方面。然而,开发一种简便且耗时短的方法来制备具有令人满意催化性能的金属磷化物势在必行。在此,通过水热法并在20秒内采用超快且简单的微波途径合成了Ru修饰的氮掺杂CoP-CoP(Ru/N-CoP-CoP)。所制备的Ru/N-CoP-CoP具有相互连接的多孔形态,以暴露出丰富的活性位点并加速质量传输。此外,N掺杂和Ru负载修饰的Ru/N-CoP-CoP在促进电催化活性方面也起着关键作用。因此,所设计的Ru/N-CoP-CoP在宽pH范围内对HER表现出良好的催化性能。在酸性、碱性和海水电解质中,Ru/N-CoP-CoP仅需63、100和65 mV的过电位即可达到10 mA cm²。该研究为合成具有高效催化活性的TMPs提供了一种新颖且高效的策略。