Liu Qing, Fu Xiaowei, Li Hongdong, Xing Jun, Xiao Weiping, Zong Yingxia, Fu Guangying, Wang Jinsong, Cao Qiang, Ma Tianyi, Wang Lei, Wu Zexing
Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 China
College of Science, Nanjing Forestry University Nanjing 210037 China.
Chem Sci. 2025 Jun 13. doi: 10.1039/d5sc02930a.
Highly efficient and corrosion-resistant electrocatalysts for the seawater hydrogen evolution reaction (HER) are crucial for large-scale hydrogen production. Herein, NiP-NiP-supported Os (Os/NiP-NiP) was synthesized within 30 s an ultrafast and simple microwave quasi-solid approach. This fabricated interface improves the electron transfer efficiency, while metal-support interaction (MSI) between Os and NiP-NiP further optimizes the electronic structure, and then significantly expedites the HER process. The electrocatalyst presents excellent performance in alkaline seawater with a low overpotential of 17 mV to reach the current density of 10 mA cm. In simulated industrial conditions (1 M KOH + seawater) using an anion exchange membrane water electrolyzer (AEMWE), the constructed Os/NiP-NiP ‖ RuO cell system required a small voltage of 2.06 V to achieve 1 A cm. The cost calculation for the produced hydrogen reveals a low price of USD $0.92 per gallon of gasoline equivalent (GGE), which demonstrates its economic advantages for industrialized application. Moreover, various stability measurements revealed that the electrolytic cell system exhibits excellent durability without significant current fluctuations. This corrosion-resistant electrocatalyst with enhanced price activity and mass activity for sustainable seawater electrolysis will pave the way in the design of efficient electrocatalysts with diverse strategies from a novel vision.
用于海水析氢反应(HER)的高效且耐腐蚀的电催化剂对于大规模制氢至关重要。在此,通过超快且简单的微波准固相法在30秒内合成了负载在NiP-NiP上的Os(Os/NiP-NiP)。这种构建的界面提高了电子转移效率,而Os与NiP-NiP之间的金属-载体相互作用(MSI)进一步优化了电子结构,进而显著加速了析氢过程。该电催化剂在碱性海水中表现出优异的性能,过电位低至17 mV即可达到10 mA cm的电流密度。在使用阴离子交换膜水电解槽(AEMWE)的模拟工业条件(1 M KOH + 海水)下,构建的Os/NiP-NiP‖RuO电池系统只需2.06 V的小电压就能实现1 A cm的电流。所产氢气的成本计算显示,每加仑汽油当量(GGE)的价格低至0.92美元,这表明其在工业化应用方面的经济优势。此外,各种稳定性测量表明,该电解槽系统具有出色的耐久性,电流无明显波动。这种具有增强的价格活性和质量活性的耐腐蚀电催化剂,将为可持续海水电解铺平道路,从新的视角采用多种策略设计高效电催化剂。