Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Acta Neuropathol. 2024 Aug 6;148(1):16. doi: 10.1007/s00401-024-02768-0.
We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
我们阐明了唐氏综合征(DS)个体特定皮质层中易损兴奋性神经元的分子指纹图谱,以了解其潜在的机制和治疗潜力,这也为阿尔茨海默病(AD)的病理生理学提供了信息。我们从尸检的 DS 个体和年龄及性别匹配的对照(CTR)中微分离额皮质(BA9)第 III 层(L3)和第 V 层(L5)锥体神经元,以研究与神经退行性程序相关的差异表达基因(DEGs)和关键生物学途径。我们确定了> 2300 个 DEGs,这些基因在 L3 和 L5 锥体神经元中表现出 DS 个体与 CTR 个体之间的基因表达的趋同失调。DEGs 包括 L3 和 L5 神经元中超过 100 个三倍体人 21 号染色体基因,表明在两个层中均存在三体神经元核型。此外,还鉴定了数千个其他 DEGs,表明基因失调不仅限于老年 DS 大脑中的三倍体基因,我们推测这与 AD 病理生物学相关。趋同的 L3 和 L5 DEGs 突出了相关的生物学途径,并确定了关键的途径相关靶标,这些靶标可能是 DS 个体皮质间神经退行性变和相关认知能力下降的基础。我们研究了一些关键的 DEG,作为驱动失调的潜在关键基因,即三倍体 DEG 淀粉样前体蛋白(APP)和超氧化物歧化酶 1(SOD1),以及关键的信号转导 DEG,包括有丝分裂原激活蛋白激酶 1 和 3(MAPK1、MAPK3)和钙调蛋白依赖性蛋白激酶 IIα(CAMK2A)等。通过多途径分析确定的关键 DEG 确定了潜在的治疗候选药物,可改善 DS 皮质神经元功能障碍和认知能力下降,对 AD 具有转化意义。