基底前脑胆碱能神经元在唐氏综合征小鼠模型中易受损,而母体胆碱补充可挽救其分子特征。
Basal forebrain cholinergic neurons are vulnerable in a mouse model of Down syndrome and their molecular fingerprint is rescued by maternal choline supplementation.
机构信息
Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, USA.
Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA.
出版信息
FASEB J. 2023 Jun;37(6):e22944. doi: 10.1096/fj.202202111RR.
Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.
基底前脑胆碱能神经元 (BFCN) 退化是唐氏综合征 (DS) 和阿尔茨海默病 (AD) 的标志。这些疾病的当前疗法在减缓疾病进展方面都不成功,这可能是由于对复杂的病理相互作用和失调的途径缺乏了解。Ts65Dn 三体小鼠模型重现了 DS 和 AD 的认知和形态缺陷,包括 BFCN 退化,并因母体胆碱补充 (MCS) 而表现出终生的行为变化。为了测试 MCS 对三体 BFCN 的影响,我们进行了激光捕获显微切割,以单独分离 Ts65Dn 和二倍体同窝仔鼠中胆碱乙酰转移酶免疫阳性神经元,并在 BFCN 退化开始时进行 MCS。我们利用单个群体 RNA 测序 (RNA-seq) 来检测内侧隔核 (MSN) BFCN 中的转录组变化。利用多种生物信息学分析程序对基因型和饮食差异表达基因 (DEGs) 进行分析,我们确定了 Ts65Dn MSN BFCN 中的关键经典途径和改变的生理功能,这些功能在三体后代的 MCS 中得到了减弱,包括胆碱能、谷氨酸能和 GABA 能途径。我们通过差异表达基因的生物信息学将差异基因表达与多种神经功能联系起来,包括运动功能障碍/运动障碍、早期神经疾病、共济失调和认知障碍,通过 Ingenuity 通路分析。这些鉴定途径中的差异基因表达可能是 DS 小鼠异常行为的基础,MCS 减弱了潜在的基因表达变化。我们提出 MCS 通过调节主要的胆碱能、谷氨酸能和 GABA 能信号通路,改善了三体小鼠隔海马回路中异常的 BFCN 基因表达,从而减轻了潜在的神经疾病功能。
相似文献
引用本文的文献
Acta Neuropathol Commun. 2024-11-27
J Infect Dis. 2024-9-10
本文引用的文献
BMC Bioinformatics. 2022-9-24