Adeoye Temitope, Shah Syed I, Ullah Ghanim
Aging Dis. 2024 Jun 12;16(3):1598-1625. doi: 10.14336/AD.2024.0429.
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
阿尔茨海默病(AD)表现为一种复杂的系统病理学,各种基因和生物学过程之间存在错综复杂的相互作用。传统的差异基因表达(DEG)分析虽然常用于表征AD驱动的扰动,但不足以全面捕捉潜在生物学过程的全貌。利用来自关键脑区——颞中回、额上回和内嗅皮质——死后脑样本的单核RNA测序数据,我们对AD中受干扰的过程进行了全面的系统分析。我们超越了以DEG为中心的分析,将通路活性分析与加权基因共表达模式相结合,以全面绘制基因间的相互联系,识别与AD相关的生物学过程中区域和细胞类型特异性的驱动因素。我们的分析揭示了神经元和神经胶质细胞中存在深刻的模块异质性以及广泛的AD相关功能破坏。共表达网络突出了星形胶质细胞和小胶质细胞在神经炎症以外的生物学过程中的广泛参与,如钙稳态、谷氨酸调节、脂质代谢、囊泡介导的运输和TOR信号传导。我们发现在神经元和神经胶质细胞失调的通路中,DEG的代表性有限,这表明仅差异基因表达可能不足以代表疾病的复杂性。对推断的基因模块的进一步剖析揭示了神经元与神经胶质细胞中枢纽DEG的不同动态,这表明在驱动受干扰生物学过程背后的模块失调方面,与神经胶质细胞相比,DEG对神经元的影响更大。有趣的是,我们观察到AD中所有脑区星形胶质细胞和小胶质细胞模块的整体下调,表明这些区域的神经胶质细胞存在普遍的功能抑制趋势。来自CALM和HSP90家族的显著基因在所有脑区的神经元模块中均作为枢纽基因出现,表明它们在AD中作为突触功能障碍驱动因素的保守作用。我们的研究结果证明了结合通路和网络分析的综合、系统导向方法对于全面理解基因在AD相关生物学过程中细胞类型特异性作用的重要性。