Kajouri Russell, Theodorakis Panagiotis E, Milchev Andrey
Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
Langmuir. 2024 Aug 20;40(33):17779-17785. doi: 10.1021/acs.langmuir.4c02257. Epub 2024 Aug 6.
The self-sustained motion of fluids on gradient substrates is a spectacular phenomenon, which can be employed and controlled in applications by carefully engineering the substrate properties. Here, we report on a design of a gel substrate with stiffness gradient, which can cause the spontaneous motion of a droplet along (durotaxis) or to the opposite (antidurotaxis) direction of the gradient, depending on the droplet affinity to the substrate. By using extensive molecular dynamics simulations of a coarse-grained model, we find that the mechanisms of the durotaxis and antidurotaxis droplet motion are distinct, require the minimization of the interfacial energy between the droplet and the substrate, and share similarities with those mechanisms previously observed for brush substrates with stiffness gradient. Moreover, durotaxis motion takes place over a wider range of affinities and is generally more efficient (faster motion) than antidurotaxis. Thus, our study points to further possibilities and guidelines for realizing both antidurotaxis and durotaxis motion on the same gradient substrate for applications in microfluidics, energy conservation, and biology.
流体在梯度基底上的自维持运动是一种引人注目的现象,通过精心设计基底特性,这种现象可在应用中得到利用和控制。在此,我们报告一种具有刚度梯度的凝胶基底的设计,该基底可使液滴根据其对基底的亲和力,沿梯度方向(趋硬性)或向相反方向(反趋硬性)自发运动。通过对一个粗粒化模型进行广泛的分子动力学模拟,我们发现趋硬性和反趋硬性液滴运动的机制不同,需要使液滴与基底之间的界面能最小化,并且与先前在具有刚度梯度的刷状基底上观察到的那些机制有相似之处。此外,趋硬性运动在更广泛的亲和力范围内发生,并且通常比反趋硬性运动更高效(运动更快)。因此,我们的研究指出了在同一梯度基底上实现反趋硬性和趋硬性运动以用于微流体、能量守恒和生物学应用的更多可能性和指导原则。